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Abstract—The Age-of-Information (AoI) is a newly introduced
metric for capturing information updating timeliness, as opposed
to the network throughput, which is a conventional perfor-
mance metric to measure the network transmission speed and
robustness as a whole. While considerable work has addressed
either optimal AoI or throughput individually, the inherent
relationships between the two performance metrics are yet to
be explored, especially in multi-hop networks. In this paper,
we explore their relationships in multi-hop networks for the
very first time, particularly focusing on the impacts of flexible
routes on the two metrics. By developing a rigorous mathematical
model with interference, channel allocation, link scheduling,
and routing path selection taken into consideration, we build
the interrelation between AoI and throughput in multi-hop
networks. A multi-criteria optimization problem is formulated
with the goal of simultaneously minimizing AoI and maximizing
network throughput. To solve this problem, we resort to a novel
approach by transforming the multi-criteria problem into a
single objective one so as to find the weakly Pareto-optimal
points iteratively, thereby allowing us to screen all Pareto-optimal
points for the solution. A new algorithm based on the piece-
wise linearization technique is then developed to closely linearize
the non-linear terms in the single objective problem via their
linear approximation segments to make it solvable. We formally
prove that our algorithms can find all Pareto-optimal points
in a finite number of iterations. From simulation results, we
identify the tradeoff points of the optimal AoI and throughput,
demonstrating that one performance metric improves at the
expense of degrading the other, with the routing path found as
one of the key factors in determining such a tradeoff.

I. INTRODUCTION

Timely updates are deemed absolutely essential in nowadays
emerging applications in Cyber-Physical Systems (CPS) and
Internet of Things (IoT), critically important for punctual
responses. The Age-of-Information (AoI) [1], [2] is a new
emerging performance metric proposed to better measure such
information updates timeliness. Defined as the time elapsed
since the generation time of the latest arrival packet at a
target node, AoI characterizes timely information delivery at
the destination. In contrast to the conventional metrics of
delay and throughput, which capture the effectiveness of data
collection and transmission for the overall networks (e.g.,
delay reflects the mean transmission time of all packets),
AoI aims to quantify the time-critical updates at a receiver.
Specifically, the optimal AoI has been demonstrated in [2] to
be significantly different from the minimized delay.
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Although AoI has its prominent advantage on characterizing
information freshness, the throughput metric, which gauges the
network transmission speed and robustness, cannot be ignored.
For instance, in a large-scale smart home network, plenty
of various smart devices are deployed to gather monitoring
information. In such a network, high throughput is a necessary
requirement to handle massive data uploads, while the lower
AoI is also crucial to meet the timely response for urgent
events. An immediate question arises here: Once AoI is opti-
mized at the receiver, will the network throughput be boosted
or hindered, especially in multi-hop wireless networks?

To date, AoI research have focused extensively on single-
hop networks. Efforts have been put in pursuit of AoI op-
timization by considering packet generation control [1], [2],
[3], various queue management mechanisms [4], [5], [6], and
scheduling policies [7], [8], [9], [10]. Moreover, the multi-
access techniques, including ALOHA and Round Robbin, are
considered in [11], [12] to bring AoI into realistic network set-
tings. Meanwhile, different network environments (e.g., with
constraints on interference [13], throughput [14], and energy
[15]) have been studied for AoI optimization under certain
constraints. However, the relationship of AoI and throughput
has never been explored in any prior work. While [14] has
considered the throughput constraint in its exploitation on AoI
optimization, the relationship between AoI and throughput is
unexplored therein. In [16], authors discuss the relationship
between throughput and AoI optimization in the single-hop
network without systematical analysis.

The study of AoI in multi-hop networks is rarely attempted
although it has gained increasing interests in the ad-hoc
network systems, such as smart cities, vehicular communi-
cations, weather forecasting, among others, where emerging
applications are urgent while the deployment of sensors or
monitors are scattered across a broad area that is far away from
the control center. Prior AoI studies on multi-hop networks
limit their scopes to either a special network topology or
an abstracted network setting. For example, [17] dealt with
AoI in the gossip network, while [18] considered a two-hop
network for AoI optimization. In [19], AoI for multi-hop
networks with general interference constraints was pursued,
but its analytic models simplify the network setting by pre-
grouping interference-free sets without taking into account the
channel allocation. All existing work on multi-hop networks
fails to take into consideration, such realistic factors as channel
access modulation and routing, and to pursue the AoI and



throughput relationships.
In this paper, we study AoI and throughput optimization in

routing-aware multi-hop networks for the first time, aiming to
explore the inherent relationships between AoI and throughput.
The network is assumed to employ OFDM channel access
modulation, with scheduling and link activation based on the
orthogonal channels. As a source may have multiple potential
paths to route its packets to a given destination node in
multi-hop networks, we consider the flexible routing paths
selection for sessions while exploring their impacts on the
overall AoI and throughput relationship. By characterizing the
channel allocation, link scheduling, packet generation, and
routes selection, we develop a rigorous model for relating
AoI to throughput in multi-hop networks. With the developed
model, we formulate a multi-criteria optimization problem
with the objectives of simultaneously minimizing AoI and
maximizing throughput.

As the developed multi-criteria problem is in the complex
form of non-linear and non-convex programming, we develop
a novel algorithm to solve it efficiently, with an aim at de-
termining all AoI and throughput tradeoff points, i.e., Pareto-
optimal points. The proposed algorithm first transforms the
multi-criteria problem into a single objective one, so as to find
the weakly Pareto-optimal points iteratively and then to screen
Pareto-optimal points for the solution. Since the transformed
single objective problem is in the non-linear form, we design
another algorithm based on the piece-wise linearization tech-
nique to reformulate the non-linear terms approximately into a
set of linear segments so that such a single objective problem
is solvable by commercial software efficiently. It is formally
proved that the proposed algorithm can find all Pareto-optimal
points in a finite number of iterations. The significance of
finding all Pareto-optimal points is that it offers the entire
landscape of achievable throughput and AoI tradeoffs, which
provides us the global view of the relationships between them.
In contrast, a solution to the traditional problem such as
maximizing throughput under AoI constraints or minimizing
AoI under throughput constraints only represents one point in
our solutions. Moreover, under certain scenarios where one
performance metric (AoI or throughput) has a higher priority
than the other one, the network operator can always find an
optimal tradeoff between AoI and throughput instantly from
the set of our Pareto-optimal points.

We conduct the simulation evaluation to quantify AoI and
throughput performance with the flexible routes. The global
landscape of AoI and throughput relationships is presented,
demonstrating that the improvement in one metric is at the
expense of deteriorating the other metric, with the routing path
identified as one of the key factors in dictating such a tradeoff
between optimal AoI and throughput.

The remainder of this paper is organized as follows. Section
II presents the mathematical model and multi-criteria problem
formulation for AoI and throughput optimization. In Section
III, we develop a novel algorithm to solve the multi-criteria
problem with the aim to find all AoI and throughput tradeoff
points. In Section IV, we develop an algorithm based on

the piece-wise linearization technique to transform nonlinear
terms in the derived single objective problem (given in Section
III) into a set of linear segments to make it solvable. Section V
presents numerical results and Section VI concludes this paper.

II. MATHEMATICAL MODELING AND FORMULATION

We consider a multi-hop wireless network comprising of
a set of nodes N . Suppose all nodes employ the OFDM
channel access modulation for data transmission and a set
of B orthogonal channels (with equal bandwidth) exists for
scheduling. There is a set of sessions L in this network, where
the source and destination nodes of each session l ∈ L are
denoted as sl and dl, respectively. The routes from source to
destination nodes of all sessions are not pre-fixed, and each
session has the flexibility to select the appropriate route so
as to meet its transmission needs. Each session involves the
time-sensitive applications, calling for freshness information
updates from its source to the destination timely. We take the
Age of Information (AoI) as the metric of choice to measure
the information updating timeliness. On the other hand, the
network throughput which gauges the packet transmission
speed and robustness is also an important criterion that should
be taken into consideration. The goal of this paper is to explore
the interrelation of AoI and network throughput in OFDM-
based multi-hop wireless networks.

A. Network Model

Let Ti denote the set of nodes in N located within node
i’s transmission range. Since the route for each session is not
pre-fixed, i may choose any node in its transmission range
to receive its transmitted data. We let a binary variable nlij [b]
indicate if a link (i, j) is set up (i.e., activated) in a channel
b for a session l as follows:

nlij [b] =


1, if the link (i, j) is activated in channel b

for sesssion l,
0, otherwise.

(1)
where i ∈ N , j ∈ Ti, l ∈ L, b ∈ B.

Assume that all sessions are unicast, i.e., node i can receive
from or transmit to only one node in a channel, we have:∑

l∈L

∑
j∈Ti

nlij [b] ≤ 1 , (i ∈ N , b ∈ B) . (2)

∑
l∈L

∑
k∈Ti

nlki[b] ≤ 1 , (i ∈ N , b ∈ B) . (3)

To account for half-duplex at each node, we have:∑
l∈L

nlij [b] +
∑
l∈L

nlki[b] ≤ 1 , (i ∈ N , j, k ∈ Ti, b ∈ B) . (4)

The above unicast and half-duplex constraints (2) (3), and (4)
can be replaced equivalently by the following constraint:∑
l∈L

∑
j∈Ti

nlij [b] +
∑
l∈L

∑
k∈Ti

nlki[b] ≤ 1 , (i ∈ N , b ∈ B) . (5)



To model interference among activated links, we denote Ii
as the set of nodes located within the interference range of a
node i ∈ N . Then, we have:∑

l∈L

nlij [b] +
∑
l∈L

nlph[b] ≤ 1 , (6)

where i ∈ Tj , p ∈ Ij , h ∈ Tp, j ∈ N , j 6= h, and b ∈ B. This
means if a node j is receiving on channel b, it will not be
interfered on the same channel by an unintended transmitter
p that locates within j’s interference range.
Link Activation Frequency. Let f lij denotes the activation
frequency of a link (i, j) among all channels for a session l,
we have:

f lij =
∑
b∈B

nlij [b] , (i ∈ N , l ∈ L, j ∈ Ti) . (7)

Let binary variable zlij represent if a link (i, j) is set up for
session l, it deified as follows:

zlij =

{
1, if f lij ≥ 1,

0, otherwise.
(8)

This means if a link (i, j) is set up only if the activation
frequency of this link for session l is no less than 1. This state-
ment can be reformulated mathematically into the following
forms:

f lij ≥ zlij , (1− zlij)f lij < 1 . (9)

Routing Constraints. Each session needs to find its route
to carry packets from its source to the destination. Suppose
there is only one path for each session and the paths from
different sessions can intersect at some nodes but no multiple
paths share the same link. The routing path for each session
l ∈ L can be formulated as follows.
• If node i is the source of a session l, we have:∑

j∈Ti

zlij = 1 , (i = sl). (10)

• If node i is an intermediate node for a session l, we have:∑
j∈Ti,j 6=sl

zlij =
∑

k∈Ti,k 6=dl

zlki , (i 6= sl, i 6= dl). (11)

• If node i is the destination node of a session l, we have:∑
k∈Ti

zlki = 1 , (i = dl). (12)

Since no link is shared by multiple sessions, we define two
other variables fij and zij as fij =

∑
l∈L f

l
ij and zij =∑

l∈L z
l
ij . We have:

zij ≤ 1 , (i ∈ N , j ∈ Ti) . (13)

Packet Transmission Model. Assuming that senders in all
sessions are always working to produce updates, and they
divide or adapt the generated data into packets of a uniform
size for transmission, denoted as d. Denote λl as the generation
rate at source sl of session l. Then, the time interval of packet
generation at the sender sl is the constant 1

λl . Let µij denote

the transmission rate of link (i, j), with the rate constrained
by the total link capacity. We have:

µij ≤ fijCij , (14)

where fij is the link activation frequency of all sessions. Here,
Cij accounts for the link capacity in a link (i, j), we have:

Cij = WB log2(1 +
pid
−γ
ij δ

N0
) , (15)

where WB being the bandwidth of each channel b, pi the
power spectral density from transmit node i, dij the distance
between nodes i and j, γ the path loss index, δ the antenna-
related constant, and N0 the ambient Gaussian noise density.

When the network reaches the steady-state, to avoid the
packet loss caused by the infinite number of backlogged
packets at any relay node, the transmission time of each packet
on a link should be no larger than the packet generation
time interval of the session that employs it. Hence, we have
1
λl ≥ d

µij
for each activated link. Since no link is shared with

multiple sessions, this can be reformulated as follows:

µij ≥
∑
l∈L

λldzlij . (16)

Throughput Model. All packets are assumed to be always
delivered successfully to destination nodes. Within a time
range (0, T ), the throughput of session l (denoted as U l) can
be expressed as

U l =
Kd

T
= λld , (17)

where K is the total number of packets generated within (0, T )
for this session. Hence, the constraint (16) can be rewritten as:

µij ≥
∑
l∈L

U lzlij . (18)

B. AoI Model

Let Ddl(t) indicate the generation time of the latest packet
reaching the destination node dl, l ∈ L. The instantaneous
AoI at time t, denoted by adl(t), is calculated by adl(t) = t−
Ddl(t). Based on the graphical argument, the total aggregated
AoI, denoted as ∆Adl , over time range (0, T ) at a destination
node dl can be calculated by the area under the curve of
instantaneous AoI, i.e.,

∆Adl =

∫ T

0

adl(t)dt . (19)

Then, the time averaged AoI at the destination node dl
(denoted as Adl ) in time range (0, T ) is expressed by:

Adl =
1

T

∫ T

0

adl(t)dt . (20)

To model AoI in the multi-hop networks, we first find the
AoI relationships of two consecutive nodes and then derive
AoI at a destination node recursively. Let Ali and Alj denote
the time averaged AoI at a node i and its successor node j
for the packets from a session l ∈ L. We have:



AoI at Node i

AoI at Node j

Fig. 1. AoI variation at two consecutive nodes.

Lemma 1. If a link (i, j) is set up between node i and node
j, time averaged AoIs for packets (from the same source node
sl) at these two nodes satisfy the following relationship:

Alj = Ali +
d

µij
. (21)

Proof. The proof is based on the graphical approach. As
shown in Figure 1, the kth packet is generated at time t(k) and
reaches node i and node j at time t̂i(k) and t̂j(k), respectively.
Assume a packet arriving at a node can be transmitted to its
successor node immediately without considering the propaga-
tion delay. Here, the dashed and solid lines represent the AoI
at nodes i and j, respectively. The difference of the aggregated
AoIs at nodes i and j during time (0, T ) equals the sum of
shadow parallelogram parts labeled in Figure 1. We have:

∆Alj = ∆Ali +

K∑
k=1

Qk , (22)

where K is the number of packets delivered within the time
span of (0, T ) and Qk is the area of kth parallelogram. From
Figure 1, the area Qk is expressed as the product of t̂j(k)−
t̂i(k) and t(k) − t(k − 1), which are the transmission time
of a packet via link (i, j) and the packet generation interval,
respectively. Hence, (22) can be given by

∆Alj = ∆Ali +

K∑
k=1

1

λl
d

µij
. (23)

Then, we have the time averaged AoI at node j within (0, T )
as follows:

Alj =
∆Ali +

∑K
k=1

1
λl

d
µij

T
= Ali +

K

T

∑K
k=1

1
λl

d
µij

K

= Ali +
d

µij
, (24)

where the term K
T is equal to the packet generation rate λl.

The importance of Lemma 1 is that it enables us to
recursively derive the time averaged AoI at a destination
node dl iteratively starting from the source node sl. Besides,
Lemma 1 also indicates that the increase in AoI through the
session mainly due to the delay introduced in the multi-hop
transmission.

AoI at Node aAoI

Time

Fig. 2. AoI variation at node a, the successor of source node sl.

Theorem 1. Time averaged AoI at the destination node dl, l ∈
L, can be calculated by:

Adl =
1

2λl
+

∑
i 6=dl,zlij=1

d

µij
, (25)

where j is i’s successor node and zlij = 1 represents that link
(i, j) is set up for transmitting packets over session l.

Proof. Based on Lemma 1, time averaged AoI at the destina-
tion node dl can be calculated iteratively from the source node
sl’s successor node a (where zlsla = 1). Hence, we have:

Adl = Ala +
∑

i 6=dl,i6=sl,zlij=1

d

µij
. (26)

Here, zlij = 1 represents that link (i, j) is set up for transmit-
ting packets over session l. From Figure 2, the aggregated AoI
at the node a for session l, denoted by ∆Ala, equals the sum
of trapezoid parts, accounting the area difference between two
isosceles right triangles. Hence, we have:

∆Ala =

K∑
k=1

{1

2
[t̂(k)− t(k − 1)]2 − 1

2
[t̂(k)− t(k)]2} , (27)

where K is the number of packets delivered to node a. In
Figure 2, the kth packet is generated at time t(k) and received
by node a at t̂(k). The term of t(k) − t(k − 1) is the time
interval of packets generation, which equals 1

λl , and the term
t̂(k)−t(k) is the packet transmission time, which equals d

µsla
.

As a result, the aggregated AoI can be calculated by:

∆Ala =

K∑
k=1

{1

2
[t̂(k)− t(k − 1)]2 − 1

2
[t̂(k)− t(k)]2}

=

K∑
k=1

[
1

2
(

1

λl
+

d

µsla
)2 − 1

2
(
d

µsla
)2]

=

K∑
k=1

(
1

2λl
2 +

d

λlµsla
) . (28)



Thus, time averaged AoI at node a over (0, T ) is:

Ala =

∑K
k=1( 1

2λl2 + d
λlµsla

)

T

=
K

T

∑K
k=1( 1

2λl2 + d
λlµsla

)

K

= λl(
1

2λl
2 +

d

λlµsla
) =

1

2λl
+

d

µsla
. (29)

Combining (29) and (26), we have:

Adl = Aa +

zlij=1∑
i6=dl,i6=sl

d

µij

=
1

2λl
+

d

µsla
+

zlij=1∑
i 6=dl,i6=sl

d

µij

=
1

2λl
+

∑
i 6=dl,zlij=1

d

µij
.

From (25), we notice that the first term is related to packet
generation interval while the second term comes from the
transmission delay over the multiple traversed links on the
specified session route. Such an AoI formula indicates that
the minimization of AoI is a comprehensive work involving
the generation rate control, routing selection scheme, and the
delay management together.

Denote Aave as the time averaged AoI of all sessions, then

Aave =
∑
l∈L

Adl =
∑
l∈L

(
1

2λl
+

∑
i 6=dl,zlij=1

d

µij
)

=
∑
l∈L

1

2λl
+

∑
i∈N

∑
j∈Ti,zlij=1

d

µij
. (30)

C. Problem Formulation

With our developed model, we aim to maximize throughput
and minimize AoI. For throughput, we are interested in maxi-
mizing the minimum throughput (denoted as Umin) among all
sessions, i.e.,

Umin ≤ U l, l ∈ L . (31)

Our problem can be formulated as a multi-criteria opti-
mization problem with the objectives of minimizing AoI and
maximizing throughput across all sessions. That is,

OPT min Aave

max Umin

s.t. The total time averaged AoI function: (30);

Interference constraints: (5), (6);

Links activation frequency: (9);

Routing constraints: (10), (11), (12), (13);

Transmission model: (14), (18);

Throughput model: (17), (31).

From OPT, we observe that the solution for the optimal
throughput may not lead to the minimal achievable AoI value
as each of them wishes to find the best resource allocation
and routing solutions for optimality individually. Improving
one objective may deteriorate the other one, and thus the two
objectives of throughput and AoI may conflict with each other,
which will also be demonstrated by our simulation results
given in Section V. The next section develops an efficient
solution for this multi-criteria optimization problem.

III. ALGORITHM DESIGN FOR AOI AND THROUGHPUT
TRADEOFFS

In OPT, we aim to simultaneously minimize AoI and
maximize throughput by pursuing the Pareto-optimal points to
exhibit their tradeoffs. The goal of our design is to develop an
algorithm that finds all Pareto-optimal points, corresponding
to all optimal values, for the multi-objective problem OPT.

A. Background for Pareto-optimal Solution

A Pareto-optimal point is a state of resources allocation
where neither objective can be improved without deteriorating
the other. The solution corresponding to a Pareto-optimal point
is called the Pareto-optimal solution. For a Pareto-optimal
solution φ∗, if the objective pair (A∗ave, U

∗
min) is a Pareto-

optimal point, there is no other feasible solution φ with the
objective pair (Aave, Umin) such that Aave < A∗ave and
Umin ≥ U∗min, or Aave ≤ A∗ave and Umin > U∗min. This means
it is impossible to find another solution to make AoI lower
without degrading throughput, or to increase throughput with-
out deteriorating AoI. Besides, an objective pair (Ãave, Ũmin)
to the solution φ̃ is a weakly Pareto-optimal point if there does
not exist a solution φ with Aave < Ãave and Umin > Ũmin.
It is apparent that a Pareto-optimal point is also a weakly
Pareto-optimal point whereas a weakly Pareto-optimal point
is not always a Pareto-optimal point.

B. Relationships between Two Metrics

Based on (17) and (30), we have:

Aave =
∑
l∈L

1

2λl
+

∑
i∈N

zij=1∑
j∈Ti

d

µij

=
∑
l∈L

d

2U l
+

∑
i∈N

zij=1∑
j∈Ti

d

µij
. (32)

Let H(R,U) = Aave and R = {n, f , z} represent resource
allocation solutions where U = {U l|l ∈ L}. For a given route
and one resource allocation of session l, we have:

∂H
∂U l

= − d

2U l
2 ≤ 0 , (33)

This indicates that AoI minimized as throughput increases with
determined routing and given channel allocation solutions.
However, based on constraints (18) and (14), the throughput
with a fixed route is limited to the bottleneck link capacity and
the avoidance of the unbound delay caused by infinite queuing



at some relay nodes. Let UR denote the maximum throughput
achievable under certain solution R. We have:

UR = min
zij=1

{fijCij} , (34)

where the variable z of every link in the fixed route is 1. For
a given routing solution R, once AoI achieves its minimum
value, throughput is limited to the value of UR.

C. Finding a Weakly Pareto-Optimal Point

In this section, we provide a two-step approach for deter-
mining a weakly Pareto-optimal point. First, we reformulate
OPT into a single AoI objective problem by adding a new
throughput constraint v while removing the throughput objec-
tive function. This problem is reformulated as follows:

OPT-AoI
min Aave

s.t. Throughput constraint: Umin > v ;

Constraints: (5), (6), (9)− (14), (17), (18), (30), (31).

By solving this problem, we get an optimal AoI value (de-
noted as Avave) with a routing solution (denoted as Rv).
Notably, OPT-AoI is in the form of mixed-integer nonlinear
programming, which cannot be solved directly. Our developed
linearized algorithm (elaborated in Section IV) is applied here
to linearize the non-linear terms in the objective function
into a set of linear segments to make OPT-AoI solvable by
commercial solvers. Second, we find the maximum throughput
under solution Rv by (34), denoted as URv .

Lemma 2. The objective pair (Avave, URv ) is a weakly Pareto-
optimal point.

Proof. The proof is based on contradiction. Assume that the
pair (Avave, URv ) is not a weakly Pareto-optimal point. There
must be a solution φ

′
with an objective pair (Av

′

ave, U
′

Rv ), that
satisfies Av

′

ave < Avave and U
′

Rv > URv . Since U
′

Rv > URv >
v, φ

′
is a feasible solution to problem OPT-AoI. However,

given Avave is the minimum value in this problem, we have
Av

′

ave ≥ Avave, contradicting the assumption.

Since a Pareto-optimal point is also a weakly Pareto-optimal
point, if we find all weakly Pareto-optimal points, all Pareto-
optimal points are then be included.

D. Determining All Pareto-optimal Points

This subsection provides an algorithm to determine all
Pareto-optimal points. While Section III-C describes how to
find a weakly Pareto-optimal point with a constant v, there
are an infinite number of values for v, making it impractical
to traverse all v values to identify all weakly Pareto-optimal
points. We provide an effective approach for selecting some
v values simply based on those weakly Pareto-optimal points
found, instead of arbitrarily searching for all v values. The
essence of our algorithm is to jump the routing path from one
to another by adjusting the values of v, with the following
general idea. In each iteration, an OPT-AoI problem is solved

with a throughput constraint v to find an optimal value of
AoI. The maximum throughput can be calculated based on the
current solution. Hence, we get a weakly Pareto-optimal pair
and then set v as the current maximum throughput value for
the next iteration. By comparing the AoI values, we single out
all Pareto-optimal points among those weakly Pareto-optimal
points found. Algorithm details are shown in Algorithm 1.

Algorithm 1 Finding Pareto-optimal Points
Step 1:
Initialization: v = 0,M = 0, P = (0, 0), an empty set O.
Solve OPT-AoI with the parameter v.
Step 2:
while Existing feasible solution to OPT-AoI with the pa-
rameter v. do

Step 2.1:
Record the objective value Avave and the routing Rv .
Calculate URv based on (34).
Add the point P = (Avave, URv ) to O.
Step 2.2:
if Avave = M then

Remove the point P from O.
end if
Step 2.3:
M = Avave and v = URv .
Solve OPT-AoI with the parameter v.

end while

Theorem 2. The set O from Algorithm 1 includes all Pareto-
optimal points and the algorithm terminates in a finite number
of iterations.

Proof. The proof consists of three steps. We first show that
each objective pair in O is a Pareto-optimal point. Based
on Lemma 2, each objective pair (Avave, URv ) is a weakly
Pareto-Optimal point. Step 2.2 in Algorithm 1 is the screening
procedure of Pareto-optimal points among the weakly Pareto-
optimal points. Consider two objective pairs, denoted respec-
tively by (Aaave, URa) and (Abave, URb), and suppose the pair
(Abave, URb) is found in the iteration after (Aaave, URa). Since
the parameter v is always equal to the throughput found in the
last iteration and the throughout keeps increasing, the solution
of Abave for OPT-AoI is also a feasible solution for Aaave,
yielding Aaave ≤ Abave. In Algorithm 1, any weakly Pareto-
optimal point with the same AoI value as that of the next point
is dropped from the set O, so Aaave < Abave. As URb > URa

and Aaave < Abave, we conclude that any two consecutive
points in O are Pareto-optimal points.

Next, we prove that all Pareto-optimal points are found by
Algorithm 1. This has to show that at each iteration, there
is no more Pareto-optimal point whose throughput value is
bigger than that found in the previous iteration (denoted as
(Apave, URp)) and is smaller than that derived in the current
iteration (denoted as (Acave, URc)). This is proved by contra-
diction. Suppose there is a Pareto-optimal point (A

′

ave, U
′
)

satisfying the above assumption, then URp < U
′ ≤ URc .



As U
′ ≤ URc , the point (A

′

ave, U
′
) can be a Pareto-optimal

point only if A
′

ave < Acave, giving rise to improved AoI.
Based on the assumption of URp < U

′
, the objective pair

(A
′

ave, U
′
) is also a feasible solution for problem OPT-AoI

with the throughput constraint of U > URp . Since Acave is the
optimal value under this constraint, we have A

′

ave ≥ Acave.
This contradicts to A

′

ave < Acave. Thus, there is no other
Pareto-optimal point existing between two neighboring ones.

Finally, we show that Algorithm 1 terminates in a finite
number of iterations. Since the activation frequency is an
integer variable in range (0, |B|) and Cij has at most N 2

different values, based on (34), the numbers of viable URv

and of v values are at most |B| · |N |2. Besides, from the
throughput constraint in problem OPT-AoI and Step 2.3 in
Algorithm 1, the value of throughput threshold v increases
with each iteration. Hence, Algorithm 1 terminates in a finite
number of iterations.

IV. LINEARIZATION OF OPT-AOI

The last section outlines a solution for determining all
Pareto-optimal points iteratively for the multi-criteria problem
of OPT. However, in each iteration, a single objective problem
OPT-AoI needs to be solved to find a corresponding weakly
Pareto-optimal point. As OPT-AoI is in the form of non-
linear non-convex programming, we apply the piece-wise
linearization technique to transform the problem of OPT-AoI
into mixed-integer linear programming (MILP), so that it can
be directly solved by commercial software.

A. Linearization of 1
µ

A nonlinear part of OPT-AoI lies in the objective function,
i.e., 1

µij
in (32). With g(x) = 1

x , the objective function then
can be replaced by:

Aave =
2

d

∑
l∈L

1

U l
+ d

∑
i∈N

zij=1∑
j∈Ti

g(µij) .

As ∂g(µ)
∂µ2 = 2

µ3 > 0, g(µ) proved to be a convex function. This
allows us to employ the piece-wise linearization technique to
approximate the curve of g(µ) with a set of linear segments
while ensuring the gap between the value of any point on g(µ)
and that on the corresponding linear segments to stay within
an approximate error η.

We denote the minimum value of µ as Cmin, which is Cij
of the bottleneck link among all sessions. Since the maximum
value of fij is |B|, µ is upper bounded by |B|Cmax (from (14)),
where Cmax is the maximum value of Cij among all links.
Assuming that the minimum number of linear segments is S,
µ0 is the X-axis value for the start point, and µ1, µ2 · · · , µS
are the X-axis values for the end points of linear segments,
we have µ0 = Cmin and µS = |B|Cmax.

To ensure the minimum number of S, we start to calculate
the slope of the first segment from µ0 and ensure the approx-
imate gap between this linear segment and the original curve
to be no more than η. With this start point and the slope,
we obtain the end point of this segment that intersects with

the original curve and treat it as the start point of the second
segment, denoted by µ1. We repeat the above process until
finding adequate segments that cover the entire feasible range
of µ. Denoting the s-th linear segment and its slope as Gs(µ)
and qs, respectively, we have:

qs =
g(µs)− g(µs−1)

µs − µs−1
, (35)

Gs(µ) = qs · (µ− µs−1) + g(µs−1) . (36)

Within each range of (µs−1, µs), there is a point with the
maximum gap between the linear segment and the curve,
denoted as η. If the x-coordinate of that point is denoted by
µ̂s, we have:

∂g(µ̂s)

∂µ
− qs = 0, Gs(µ̂

s)− g(µ̂s) = η. (37)

The slope qs can be obtained by solving above equations. If for
the start point of the s-th segment with g(µs−1) ≤ η, we set
its end point at µs = |B|Cmax and then have the last segment
drawn from (µs−1, g(µs−1)) to (|B|Cmax, g(|B|Cmax)). Al-
gorithm 2 gives the details of finding the values of µ1, · · · , µS
and slopes q1, · · · , qS for any given approximate error η,

Algorithm 2 Piece-wise Linearization
Initialization: s = 1 and µs−1 = Cmin.
while µs−1 < |B|Cmax and g(µs−1) > η do

Calculate slop qs by solving (37).
With qs, calculate µs based on (35).
s = s+ 1.

end while
if µs−1 ≥ |B|Cmax then
S = s − 1, µS = |B|Cmax, and recalculate qS based on
(35).

else if g(µs−1) ≤ η then
S = s, µS = |B|Cmax, and calculate qS based on (35).

end if

Lemma 3. The approximation error within each linear seg-
ment derived from Algorithm 2 is no more than η.

The proof is based on the aforementioned construction
process and is omitted here. With Algorithm 2, we can
approximate 1

µ in the objective function via a set of linear
segments with an error upper bounded by η.

B. Linearization of 1
U

Similarly, the non-linear part for throughput in the objective
function of OPT-AoI also appears in the g(x) form, i.e.,
1
U l . We follow the same piece-wise linearization solution as
above to reformulate it into a set of linear segments with a
guaranteed approximate error, denote by η2. Specifically, it
determines the minimum number of linear segments E, the
slopes q1u, q

2
u, ..., q

E
u , the X-axis values U0, U1, U2..., UE of

the linear segments. Its detailed discussion is omitted here.



C. Problem Reformulation and Approximate Gap
Let G(µ) and G2(U) represent the concatenated linear seg-

ments for 1
µ and 1

U , respectively, derived from Sections IV-A
and IV-B. The objective minAave of OPT-AoI can be replaced
by the following linear function and constraints:

min ALave

s.t. ALave =
d

2

∑
l∈L

G2(U l) + d
∑
i∈N

zij=1∑
j∈Ti

G(µij) ; (38)

G(µij) ≥ qs · (µij − µs−1) + g(µs−1) ,

G2(U l) ≥ qeu · (U l − Ue−1) + g(Ue−1) ,

(s = 1, 2, · · · , S, µ ∈ [Cmin, |B|Cmax]) ,

(e = 1, 2, · · · , E, U ∈ [0, |B|Cmax]) . (39)

Then, the original OPT-AoI problem is reformulated into the
following new optimization problem, i.e.,

OPT-L min ALave

s.t. Throughput constraint: Umin > v ;

Constraints: (5), (6), (9)− (14), (17), (18),

(30), (31), (38), (39).

OPT-L is in the form of mixed integer linear programming,
which can be solved by commercial solvers (e.g., CPLEX) ef-
ficiently. The following theorem characterizes the error bound
between the optimal objective values of OPT-L and those of
the original OPT-AoI problem.

Theorem 3. The gap between the optimal objective values of
OPT-AoI and OPT-L, ε, is upper bounded by d

2

∑
l∈L η2 +

d
∑
i∈N

∑zij=1
j∈Ti η.

Proof. Suppose the optimal solution of OPT-AoI is ϕ∗AoI =
{n∗ij [b], f∗ij , z∗ij , µ∗ij , U l

∗} with the objective value being AO∗ave.
Because the solution ϕ∗AoI meets all constraints in OPT-L, we
can construct a feasible solution (denoted as ϕAoI−L) with its
n, f , z, µ and U values kept the same as those in ϕ∗AoI of
G(µ) and G2(U). Denoting the objective value of the solution
ϕAoI−L as ALave, we have:

ALave −AO∗ave =
d

2

∑
l∈L

G2(U l
∗
) + d

∑
i∈N

∑
j∈Ti,zij=1

G(µ∗ij)

− d

2

∑
l∈L

g(U l
∗
)− d

∑
i∈N

∑
j∈Ti,zij=1

g(µ∗ij)

≤ d

2

∑
l∈L

η2 + d
∑
i∈N

∑
j∈Ti,zij=1

η ,

where the last inequality is derived from Lemma 3. Let
ε = d

2

∑
l∈L η2 + d

∑
i∈N

∑zij=1
j∈Ti η and ϕ∗AoI−L denote the

optimal solution of OPT-L, with the objective value of AL∗ave.
Since ALave is the value of a feasible solution to OPT-L, we
have AL∗ave ≤ ALave. As a result, AL∗ave−AO∗ave ≤ ALave−AO∗ave ≤
ε.

Note that (30), (9), and (18) of OPT-L also include the non-
linear terms. Those terms can either be reformulated through
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Fig. 3. The AoI and throughput tradeoff with different number of sessions.

Reformulation Linearization Technique (RLT) [20], [21], or
be automatically linearized by using the boolean expression
in the CPLEX solver with great efficiency.

Our complete solution for OPT-AoI is summarized as
follows: for a pre-defined approximate error ε, we first can
calculate the linearization errors η and η2 and then construct
a set of linear segments based on Algorithm 2. After that we
reformulate OPT-AoI into OPT-L, which is solved by CPLEX.

V. NUMERICAL RESULTS

In this section, we present the numerical results of AoI and
throughput performance in multi-hop networks with flexible
routing paths, revealing the achievable AoI and throughput
curves under different network settings in multi-hop networks.
We randomly generate a 25-node network in a 100 × 100
area. For generality, we normalize the units for distance,
bandwidth, power, packet generation, and transmission rate
with appropriate dimensions.

A. Impact of Session Amounts

We increase the number of sessions to 2, 3, and 5. Figure 3
shows the optimal throughput and AoI curves (by connecting
all Pareto-optimal points) under different numbers of sessions.
From this figure, optimal AoI is seen to drop with an increase
in the maximum throughput value. This demonstrates the
importance of exploring AoI and throughput relationships
when studying AoI in the network. In addition, both AoI and
throughput deteriorate as the session count in the networks
rises. The reason is that more sessions occupy more network
resources, and thus suffering from higher interference in the
network. The resource allocated to each session drops, thereby
resulting in larger AoI and lower throughput.

B. Impact of Interference Strength

The impact of the interference range on the AoI-throughput
curve is unveiled. We randomly generate 3 sessions and vary
the interference range from 50, 60, to 70, with AoI-throughput
curves depicted in Figure 4. It is seen that both AoI and
throughput deteriorate with an increase in the interference
range, as expected because a larger interference range results
in a lower average activation frequency among links. Thus,
throughput drops as the result of a lower bottleneck link
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transmission rate, and AoI rises with a longer transmission
time.

C. Impact of Network Topology

As the network topology changes when the node count
rises, we explore the impact of network topology on AoI and
throughput tradeoffs by varying the number of nodes from 16,
25, to 36 in the 100×100 area. In each setting, 3 sessions
are randomly generated. Figure 5 shows the Pareto-optimal
curves between throughput and AoI under different numbers
of nodes in the network. We can observe that as the number of
nodes increases, the throughput increases significantly while
AoI exhibits moderate trends in its value changes. The reason
is that, with increased nodes density, the average transmission
distance of each activated link in all sessions decreases,
thereby heightening the averaged link capacity to improve
the network throughput. On the other hand, the optimal AoI
prefers routes with fewer nodes, and hence higher node density
only lifts the choice of link selection for AoI optimization and
fails to improve this metric significantly.

Moreover, when the throughput reaches the maximum value,
AoI becomes a little bit worse with further more nodes in
the network than without. For a multi-hop network with more
nodes, its throughput is improved with more relay nodes to
shorten the bottleneck link, resulting in higher interference
among the increased number of links to damage the average
transmission rate and AoI.
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D. Comparison with Different Routing Schemes

We now fix the number of nodes as 25 and generate a
single session to explore the impact of routing selection on
our solution. As there does not exist solutions exploring the
routing and AoI-throughput tradeoff in multi-hop networks, we
take the shortest path and the minimum averaged link distance
schemes into consideration for comparison, with the results de-
picted in Figure 6. By comparing three Pareto-optimal curves,
we can see our flexible routing solution achieves the best in
both throughput and AoI. This demonstrates the advantage of
our proposed flexible routing scheme. Meanwhile, the shortest
path scheme exhibits better AoI while the minimum averaged
link distance scheme enjoys higher network throughput, when
comparing two of them. The reason is that the shortest path
scheme involves fewer relay nodes to yield less transmission
delay, thus the larger average transmission rate leading to
lower AoI. The minimum averaged link distance scheme can
result in larger bottleneck link capacity, which helps to lift the
throughput. On the other hand, more relay nodes involved in
this scheme heighten AoI.

VI. CONCLUSION

This paper has presented an in-depth study on the optimal
AoI and throughput tradeoff in multi-hop networks for the first
time, with such physical factors as channel allocation, schedul-
ing, and flexible routing selection taken into consideration. A
rigorous mathematical model is developed to characterize the
interrelation of AoI and throughput. By formulating a multi-
objective problem and developing a novel algorithm to find
Pareto-optimal points, we identify all tradeoff points of the
optimal AoI and throughput. Our algorithm has been proved to
find all Pareto-optimal points with a finite number of iterations.
The simulation results demonstrate the existence of a tradeoff
between AoI and throughput, with one performance metric to
improve while degrading the other metric. Our mathematical
development, algorithmic solutions, and results included in
this paper shed light on wireless network design by relating
two key performance metrics, calling for AoI and throughput
optimization simultaneously, instead of optimizing one single
metric individually.
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