
Platform-Oblivious Anti-Spam Gateway
Yihe Zhang

yihe.zhang1@louisiana.edu

University of Louisiana at Lafayette

Lafayette, LA, USA

Xu Yuan
∗

xu.yuan@louisiana.edu

University of Louisiana at Lafayette

Lafayette, LA, USA

Nian-Feng Tzeng

tzeng@louisiana.edu

University of Louisiana at Lafayette

Lafayette, LA, USA

ABSTRACT
This paper addresses a novel anti-spam gateway targeting multiple

linguistic-based social platforms to expose the outlier property of

their spam messages uniformly for effective detection. Instead of la-

beling ground truth datasets and extracting key features, which are

labor-intensive and time-consuming, we start with coarsely mining

seed corpora of spams and hams from the target data (aiming for

spam classification), before reconstructing them as the reference.

To catch each word’s rich information in the semantic and syntac-

tic perspectives, we then leverage the natural language processing

(NLP) model to embed each word into the high-dimensional vec-

tor space and use a neural network to train a spam word model.

After that, each message is encoded by using the predicted spam

scores from this model for all included stem words. The encoded

messages are processed by the prominent outlier techniques to pro-

duce their respective scores, allowing us to rank them for making

the outlier visible. Our solution is unsupervised, without relying

on specifics of any platform or dataset, to be platform-oblivious.

Through extensive experiments, our solution is demonstrated to

expose spammers’ outlier characteristics effectively, outperform

all examined unsupervised methods in almost all metrics, and may

even better supervised counterparts.

CCS CONCEPTS
• Security and privacy → Web application security; Network
security; Intrusion/anomaly detection and malware mitigation.

KEYWORDS
Anti-Spam; Unsupervised; Outlier Detection

ACM Reference Format:
Yihe Zhang, Xu Yuan, and Nian-Feng Tzeng. 2021. Platform-Oblivious Anti-

Spam Gateway. In Annual Computer Security Applications Conference (AC-
SAC ’21), December 6–10, 2021, Virtual Event, USA. ACM, New York, NY,

USA, 14 pages. https://doi.org/10.1145/3485832.3488024

1 INTRODUCTION
Nowadays, the ever-growing use of social platforms (e.g., social net-

works, emails, and others) brings great convenience to our daily life,

leading to our high reliance on them for communications, conver-

sations, or discussion. At the same time, it also pervasively attracts

spammers’ interests to spread spam messages or information, that

pollute the social platforms purposefully. Existing anti-spam mech-

anisms have filtered the majority of spam messages, leaving out

only a small portion. Nonetheless, spam messages that escape from

anti-spam mechanisms are still plentiful, and they continuously

cause gross detriments to the normal users. It remains challeng-

ing to detect and remove them for mitigating the cyberspace risks

∗
Corresponding author

and sanitizing social environments. Given the fact that spammers

inevitably exhibit behavioral patterns which differ considerably

from those of normal users, such a disparity never disappears once

spammy behaviors are undertaken. Furthermore, skillful spammers

may keep evolving to imitate normal users by concealing their

behaviors for abnormality reduction. As a result, it is imperative to

design an intelligent spam detection system for mining the latent

patterns and use them for classifying spammers automatically.

To date, various supervised learning methods have been pro-

posed for spam detection. By extracting effective features and re-

lying on labeled ground-truth datasets, the machine learning clas-

sifiers learn the latent disparity inherent to spam and ham (i.e.,

non-spam) messages. Extensive work has undertaken on extracting

various features, including user profiles [13], behaviors [23], mes-

sage contents [32, 54], user relationships [9, 49, 62], among others.

However, extracting key features has been widely recognized as a

challenging problem. In addition, all those features are tailored only

to a specific dataset or platform, with considerable effort involved

in deriving new customized features for every individual platform.

Furthermore, reliable large-sized ground-truth datasets are nec-

essary for supervised learning, but they represent another chal-

lenge. So far, there is no effective method for labeling a large-sized

dataset reliably. Moreover, the supervised methods may perform

poorly when applied to the real social networks data, where the

spam and ham messages are highly uneven, as revealed by promi-

nent research [29, 44, 52, 55]. Meanwhile, semi-supervised methods

[11, 18, 24] have been proposed to mitigate their reliance on the

ground-truth datasets. But, suitably sized ground-truth datasets

are still required, and one proposed solution generally performs

unsatisfactorily when applied to other platforms. Although diverse

unsupervised learning methods were pursued [28, 35, 50, 51] for

freeness from labeling datasets, they usually exhibit mediocre per-

formance.

To address the aforementioned concerns on feature extraction,

ground-truth labeling, cross-platform deployment, and unsatisfac-

tory performance, we aim to develop an effective platform-oblivious

framework for unsupervised spam detection. According to the fact

that spam messages account for a small portion of the total data

volume and that their patterns are fundamentally disparate in com-

parison to those from normal users, they can be easily detected and

removed, if exposed as the outliers of whole data volume. The promi-

nent outlier detection method proposed in [7] is effective in mining

the outlier property of a given dataset in three dimensions, i.e.,

Shapes, Magnitude, and Amplitude. However, not all spammers’ out-

lier characteristics are apparent, calling for an appropriate encoding

method to make spam messages visible in the three dimensions.

This paper introduces a novel spam detection approach by ex-

posing the outlier property of spams, deriving a platform-oblivious

framework to work in an unsupervised manner. Our approach is

https://doi.org/10.1145/3485832.3488024

unified and readily deployable to multiple linguistic-based social

platforms without involving extra effort individually. It relies on the

spam and ham words automatically mined from the target dataset

(aiming for spam classification), instead of the previously labeled

ground-truth dataset, to serve as the seed corpora of spams and

hams, respectively. A newmethod based on mining messages’ struc-

ture is proposed for automatically identifying the sets of spam seed

and ham seed corpora from the target dataset. We further refine

them with a series of techniques and then reconstruct them. Here,

the Gibbs sampling [36] is used to help us iteratively pre-label the

spam and ham datasets while sampling each word’s distribution

in the respective datasets. Such sampled word distributions are

used to calculate the spam scores of all words for reconstructing

both new spam and ham corpora. Furthermore, we employ the NLP

model to embed each word into the high-dimensional vector space

so that it can cover a rich set of words with the similar meanings

or structures. The neural network is then employed to learn the

high-dimensional representations of words and their associated

scores to train a spam word model, serving to predict other words’

spam scores in the target dataset.

Meanwhile, we represent each message in the target dataset by

a list of stem words, which are then inputted into the spam word

model to predict the spam scores, being used to encode this message.

In the end, Magnitude outlier approach stated in [7] is employed

with the input of encoded messages to calculate their outlier scores

for ranking them from the highest values to the lowest to exhibit

spams’ outlier property.

The contributions of our work are summarized as follows.

• We develop a novel anti-spam gateway that can clearly ex-

pose the outlier property of spam messages in the target

datasets. Our system is unsupervised without relying on fea-

ture extraction or ground-truth labeling, able to significantly

relieve the detection workload. Instead, our system utilizes

the target dataset to acquire the spam words, potentially

overcoming the spam feature drift problem to some extent.

• Our solution is unified for manifold linguistic-based social

platforms since it does not rely on any prior knowledge (e.g.,

features and training data) to mine linguistic information

and patterns. Thus, it is not tailored to any specific platform

and can be deployed and integrated into multiple platforms

to automatically conduct spam detection task, without addi-

tional effort individually. The experiments confirm that our

system works efficiently on the datasets from short message

service (SMS), Email, and Twitter, exposing spams as the

outliers of the respective dataset.

• We propose a novel technique to estimate both the spam

ratio in a dataset and the threshold value used for detecting

spams via the visualized outlier curve. Such a technique is

important, acting as a complement to the prior outlier tech-

nique, for automatically separating spam and ham regions.

• We implement our system and run it on four linguistic-based

datasets from various platforms. Experimental results show

that our system not only outperforms all examined unsuper-

vised solutions in almost all performance metrics under the

four datasets, but also may surpass its supervised counter-

parts, while avoiding ground-truth labeling costs.

Messages/Post
streaming

Email SMS Tweets …

…

Social platforms
SpamHound

Truecaller
Massage Blocking

Verified SMS
…

SpamTitan

Symantec Mail
SpamAssassin

Commercial
anti-spam

Razor2
…

Twitter anti-spam
Hootsuite

…

Outlier-based spam detectionOur solution

Users …

Figure 1: Illustration of our proposed solution in target prob-
lem space.

As an unsupervised spam detection solution, our proposed ap-

proach is readily applicable to datasets collected from a given social

platform at different time points without any labeling nor model pa-

rameter rectification effort at all, for time-invariant portability with

equally high accuracy. For example, our solution was applied both

to the set of 2, 094, 889 tweets collected over two days in November

2020, and to Twitter Normal Dataset [1] (with 5, 823, 230 tweets col-

lected in 2019, as detailed in Section 4.1). It reported 161,935 tweets

as spams and 1, 932, 954 as ham ones for the 2020 tweet dataset,

giving rise to the Precision and Recall being 86.3% and 82.4%, re-

spectively. The results are close to those obtained by our solution

on the 2019 Twitter Normal Dataset (which yielded the Precision

of 85.1% and the Recall of 78.4% as shown in Table 4). Hence, the

proposed solution confirms the clear advantage of an unsupervised

approach, able to be platform-oblivious and time-invariant. For the

rest of this paper, we focus on the platform-oblivious perspective of

our solution, knowing that its time-invariant feature holds equally.

2 PROBLEM STATEMENT
This paper studies the spam detection problem in social platforms

where users post and/or interact via linguistic information (i.e., mes-

sages) for discussion or conversation. By realizing that the spammy

behaviors of a spammer will inevitably expose some natures that

are disparate when compared to normal users’ patterns, we aim

to capture such an inherent nature and develop a novel platform-

oblivious solution for its detection. Our proposed solution is to

act as a complementary component to the commercial anti-spam

mechanisms (as shown in Figure 1), to further filter out the residual

spam messages that escape from existing commercial anti-spam

mechanisms.

2.1 Motivation
Nowadays, commercial anti-spam mechanisms have been widely

deployed in social platforms, which can block the majority of spam

messages [41, 45]. However, there remains a small portion and yet

0 50 100 150
Tweets ID

1

2

3

#
of

U
R

L
s

Ham

Spam

Figure 2: Spammers tend to employmore URLs than normal
users, causing them to stand out.

0 1 2 3 4 5 6
Tweets features

101

103

105

V
al

u
e

Ham

Spam

Figure 3: Spamoutliers, where an outlier feature value refers
to a substantially larger or smaller value than themean, and
where 0-6 on the X-axis are 7 features extracted from each
tweet.

unignorable amounts that can escape from these mechanisms, per-

vasively polluting the social environments and causing cyberspace

risks. We observe that although spammers imitate the normal users

to conceal their spammy activities, their special behaviors inevitably

reveal inherent disparities with respect to the majority of normal

dataset, which can exhibit outlier characteristics detectable through

deep analyses.

Our empirical feat has unveiled that the outlier nature indeed

exists when analyzing some labeled ground truth datasets. For

example, [1] outlines a set of labeled tweets collected from Twitter

networks. We randomly select 189 tweets and analyze the number

of URLs included in each tweet. Figure 2 shows the numbers of URLs

involved in the spam and ham tweets, with red and blue points

denoting URL counts of the former and the latter, respectively.

Apparently, spammers tend to use more URLs than normal users

since an URL realizes redirection toward a certain malicious website.

This makes the spam tweets stand out, thus exhibiting the outlier

property. It should be noted that a disguise spammer may try to hide

its tweets’ outlier property by lowering the URL counts contained

therein, if the spammer knows the specific feature being targeted

for outlier detection. However, our solution employs a wide range

of features from both semantic and syntactic perspectives for outlier

detection and those features are not static, able to evolve over time,

as stated next.

The outlier property is evidenced by other features as well. Fig-

ure 3 shows different values of various features for spam and ham

tweets, with a total of 7 features (along the x-axis) considered, i.e.,

number of lists, number of favorites, number of statuses, number of

hashtags, username length, number of URLs, and user screen name

length. In this figure, red lines and blue lines indicate respectively

the spam and the ham tweets. It is observed that most spammers

exhibit themselves as outliers to some extent, with respect to the

values of these 7 features.

Figures 2 and 3 roughly exhibit a certain level of outlier property

for spams’ patterns when taking the proper features into account.

These results demonstrate that spam messages indeed have the

outlier property, thus motivating our development of a new spam

detection framework by exploring such property. Meanwhile, we

also observe some spam tweets still hide within the majority of

ham tweets. The reason is possibly due to the missing of some key

features or some spammers use sophisticated techniques to disguise

themselves, making their latent patterns inapparent. This signifies

that just selecting features to encode messages are inadequate.

It is necessary to develop a new encoding method to facilitate

dataset processing so that spam messages in the entire dataset

can be exposed as outliers. In this work, we aim to have a deep

investigation into mining the disparate patterns between spam

and ham messages, for exposing the outlier characteristics of spam

messages in order to make them detectable. Our solution is expected

to be platform-oblivious, applicable to multiple linguistic-based

social platforms without rectification.

3 PLATFORM-OBLIVIOUS FRAMEWORK
In this section, we develop a platform-oblivious unsupervised sys-

tem that can be generally applied to different social platforms for

effectively singling out spam messages. Our system consists of the

following core components (shown in Figure 4): i) Rough Seed col-
lection (Section 3.1), ii) Reconstructing words corpora (Section 3.2),
iii) Training spam word model (Section 3.3), and iv) Outlier detection
(Section 3.4). Given any target dataset aiming for spam detection,

Section 3.1 proposes two measures to capture spam and ham’s

unique structures, respectively, in the target dataset, for helping

to roughly collect the spam and ham seed corpora. Section 3.2 nar-

rates the procedure for reconstructing spam and ham corpora by

leveraging the Gibbs sampling method [36] with our customized

design. Section 3.3 first details that each word in the reconstructed

corpora is embedded into the high dimensional vector space so as

to reflect its richer syntactic and semantic patterns, thereby able to

help cover a set of words that have the similar structure or meaning.

The neural network is then employed to train a spam word model

with the input of word vectors and the output of associated scores.

In Section 3.4, we use the trained spam model to predict the spam

scores of all stem words included in each message from the target

dataset and use them to encode this message. Then, the Magnitude
outlier approach [7] is employed by taking the encoded messages

as input to expose the outlier property of spam messages.

3.1 Seed Collection
Without the labeled ground truth for training, some patterns show-

ing the disparity between spams and hams have to be identified first

as the reference for distinguishing them in the design of our un-

supervised solution. Since spammers typically use certain specific

Ham Seed
Corpus

Target Dataset

Text Processing and
Segmentation

Spam Seed
Corpus

Sampling Word
Distribution

Scoring Words

Reconstruct Spam
and Ham Corpus

Embed Words into
Vector Space via NLP

Model

Neural Network
Model

Trained Spam Word
Model

Encoded Messages

Outlier Detection

Embed Words into
Vector Space via NLP

Model

Train Spam and
Ham Model
(Section 3.3)

Words Corpus
Collection

(Section 3.1)

Reconstruct Spam and
Ham Corpus
(Section 3.2)

Outlier Detection
(Section 3.4)

ALER MCER

Figure 4: Flowchart of our platform-oblivious spam detec-
tion system.

syntaxes and semantics for the spammy purpose, their messages are

constructed to have significant differences from the ham ones. This

inspires us to identify from the target dataset, two sets of words that

are highly likely to be used by spam and hammessages, respectively,

referring them as the spam seed and ham seed corpora. However,

deriving seed corpora is challenging, as for a given word, it is diffi-

cult to surely claim its polarity since it may have different semantic

meanings in various sentence structures. Inspired by the classical

directed acyclic word graphs language model often adopted to de-

tect unique structures of strings and substrings[30], we propose

two new methods, named as Average Longest Equivalent Relation

(ALER) and Mass Class Equivalent Relation (MCER), for calculating

the average length and the number, of different unique patterns in a

message, respectively. Our spam and ham corpora are constructed

according to ALER and MCER measures of all messages.

The initial step of our method is to pre-process the dataset in

two steps. (1) Word Cleaning: by removing auxiliary characters

and information from the dataset, such as the email address, URL

links, @ or hashtag information, etc. They are the regular format or

words that are commonly used in the social platforms but unhelpful

to mine spammers’ patterns, thus subject to removal safely. Then,

we remove the stop words that have little (or no) semantic meaning

by using the NLTK package in Python. (2) Stemming: by employing

the stemming process to further reduce inflected (or derived) words

to their stems, e.g., “take” and “took”. This step aims to use a unified

stem word to capture the corresponding spam or non-spam pattern.

With such two-step pre-processing, each messagemi in a target

dataset Dt can be represented with a list of stem words, denoted

as Si = {w1,w2, · · · }. For each Si , we discover all its N -grams

(with N ranging from 1 to 10, for simplicity, knowing that the

range can vary for different datasets) and put them into the set

of Sub(Si). We express all unique grams as SubT = Sub(S1) ∪

Sub(S2), · · · , Sub(SK), where K is the number of messages. For

each gram s ∈ SubT , if s appears in Sk , the corresponding index k

is recorded in Occ(s), i.e.,

Occ(s) = {k |if s ∈ Sub(Sk) for 1 ≤ k ≤ K} . (1)

Definition 1. For any two grams s1 and s2, their equivalent
relation ≡ is defined as: s1 ≡ s2 ⇔ Occ(s1) = Occ(s2).

Let [s1]Occ and [s2]Occ denote the equivalent classes of s1 and

s2, respectively. If s1 ≡ s2, we have s1 ∈ [s2]Occ , s2 ∈ [s1]Occ , and

[s1]Occ = [s2]Occ .

Definition 2. Assume s1, s2, · · · , sn are grams in SubT and they
have the same equivalent relation to s , i.e., s1 ≡ s2 · · · ≡ sn . The
longest equivalent relation LER(s) is defined as:

LER(s) = max{ |s1 |w , · · · , |sn |w }, for s1, · · · , sn ∈ [s]Occ ,

where | · |w denotes the length of the gram.

The rationale of counting LER comprises three key points. First,

the LER measure of a gram s takes into account all other ones that

have the equivalent relation, and that may share the same syntac-

tic/semantic patterns. Second, the higher value of LER indicates

the more unique characteristic of a gram. Third, if a message in-

cludes a commonly used syntactic/semantic pattern, it signifies

more equivalent classes.

Given the fact that a spam typically uses certain uncommon syn-

tactic and semantic patterns, we define the ALER measure, which

will be used last to filter out spam seeds. ALER of Si is calculated
by averaging over all LER measures of grams in Sub(Si), i.e.,

ALER(Si) =
1

|Sub(Si)|

∑
s ∈Sub(Si)

LER(s), (2)

where |Sub(Si)| denotes the total number of grams in Sub(Si).
Meanwhile, the MCER measure is defined to count the number

of different equivalent classes corresponding to a message, used

last for filtering the ham seed, i.e.,

MCER(Si) = #{[s]Occ |s ∈ Sub(Si)}, (3)

where # counts the number of unique equivalent classes. To better

understand the ALER and MCER measures, we use a toy example

to show their calculation procedure, as follows:

Example 3.1 (A Toy Example). We use three messages shown in
Figure 5(a) as an example. After two-step pre-processing, i.e., word
cleaning and stemming, each message can be represented by a set of
stem words shown in Figure 5(b). Then, the N -grams of each message
can be found (see Figure 5(c)). We calculate the Occ according to
Eqn. (1) and derive the equivalent relations shown in Figure 5(d). For
each equivalent class (corresponding to each row in Figure 5(d)), we
calculate the respective LER value as shown in Figure 5(e). Specifically,
LER for the equivalent class [‘urgent’]Occ is 5, since the longest gram
in the same class (i.e., ‘urgent grandson arrest night mexico’) contains
five words. Next, we can calculate the ALERs based on Eqn. (2). That
is, in message 1, there are total 15 grams, so ALER(S1) = 1/15 ∗

(5 ∗ 15) = 5. In message 2, there are 10 grams, then ALER(S2) =

1/10 ∗ (4 ∗ 7 + 2 ∗ 3) = 3.4. In message 3, there are 6 grams, then
ALER(S3) = 1/6 ∗ (3 ∗ 3 + 2 ∗ 3) = 2.5. We then calculate MCER
based on Eqn. (3), with results shown in Figure 5(f). For example, in
message 1, there is only one unique equivalent class [‘urgent’]Occ ,
so MCER(S1) = 1. For message 2, two unique equivalent classes
[‘see’]Occ and [‘major’]Occ exist, soMCER(S2) = 2. For message 3,

Urgent your grandson was
arrested last night in Mexico.

I will see the major person
that can guide me.

You are the major person
in my life.

(1)

(2)

(3)

(a) Original messages

{urgent, grandson, arrest,
night, mexico}

{see, major, person, guide}

{major, person, life}

(b) Two-step pre-processing

results

{‘see’, ‘major’, ‘person’, ‘guide’, ‘see major’, ‘major person’, ‘person guide’,
‘see major person’, ‘major person guide’,’see major person guide’}

{‘major’, ‘person’, ‘life’, ‘major person’, ‘person life’, ‘major person life’}

N-grams Count

15

10

6

Index

(1)

(2)

(3)

{‘urgent’, ‘grandson’, ‘arrest’, ‘night’, ‘mexico’, ‘urgent grandson’, ‘grandson
arrest’, ‘arrest night’, ‘hight mexico’,’urgent grandson arrest’, ‘grandson arrest
night’, ‘arrest night mexico’, ‘urgent grandson arrest night’, ’grandson arrest

gift mexico’, ‘urgent grandson arrest hight mexico’}

(c) N -grams of each message

{‘urgent’, ‘grandson’, ‘arrest’, ‘night’, ‘mexico’, ‘urgent grandson’, ‘grandson
arrest’, ‘arrest night’, ‘hight mexico’,’urgent grandson arrest’, ‘grandson arrest
night’, ‘arrest night mexico’, ‘urgent grandson arrest night’, ’grandson arrest
gift mexico’, ‘urgent grandson arrest hight mexico’}

{‘urgent’, ‘grandson’, ‘arrest’, ‘night’, ‘mexico’, ‘urgent grandson’, ‘grandson
arrest’, ‘arrest night’, ‘hight mexico’,’urgent grandson arrest’, ‘grandson arrest
night’, ‘arrest night mexico’, ‘urgent grandson arrest night’, ’grandson arrest

gift mexico’, ‘urgent grandson arrest hight mexico’}

N-grams Co-occurrence Index

{1}

{‘see’, ‘guide’, ‘see major’, ‘person guide’, ‘see major person’, ‘major person
guide’,’see major person guide’} {2}

{‘life’, ‘person life’, ‘major person life’} {3}

{‘major’, ‘person’, ‘major person’} {2, 3}

(d) Co-occurrence of N -grams

Equivalent Class

[‘urgent’]Occ

Longest member in the same class

[‘urgent grandson arrest hight mexico’]Occ

[‘see’]Occ [‘see major person guide’]Occ

[‘life’]Occ [‘major person life’]Occ

[‘major’]Occ [‘major person’]Occ

LER

5

4

2

3

(e) Calculating LER

Message

Urgent your grandson was arrested last night in Mexico.

Equivalent Class

[‘urgent’]Occ

[‘see’]Occ

[‘life’]Occ

MCER

1

2

2

I will see the major person that can guide me.

You are the major person in my life.

[‘major’]Occ

[‘major’]Occ

(f) MCER values

Figure 5: An example of calculating ALER and MCER.

there are two unique equivalent classes of [‘life’]Occ and [‘major’]Occ ,
soMCER(S3) = 2.

We scan the spam and ham seeds that lie in the top 1% mea-

sures of ALER and MCER, respectively. More specifically, the stem

words in the messages which belong to top 1% ALER measure but

fail to appear in the messages with top 1% MCER measure, will

be considered as the spam seed. Similarly, the stem words in the

messages which belong to top 1% MCER measure but fail to appear

in the messages with top 1% ALER measure, will be used as the ham

seed. Notably, the threshold 1% is selected based on our empirical

study. We have conducted experiments on 3000 randomly selected

email messages from the Metsis email dataset [26] for verification.

Figure 6 shows the ALER and MCER measures of all messages. It

0 50 100 150
Message count

0

200

400

600

A
L

E
R

m
ea

su
re

1% threshood

ham

spam

0 50
Message count

0

2000

4000

6000

8000

M
C

E
R

m
ea

su
re

1% threshood

ham

spam

Figure 6: ALER and MCER measures of 3000 emails.

is observed that a set of spam and ham messages can be safely

singled out by setting the threshold values of 1% for ALER and

MCER, respectively. We further conduct extensive experiments (see

Section 4.5) on various datasets and vary threshold values from

0.2% to 10%. Experimental results confirms that 1% is a confident

threshold on various sized datasets in our system.

3.2 Reconstructing Words Corpora
We have roughly collected both spam seed and ham seed corpora

from the target dataset. But these two seed sets are raw and too tiny

if directly applied for spam detection. We next focus on mining in-

herent features of the roughly collected seed corpora for enhancing

spam and ham words corpora through reconstruction. We aim to

use the word distribution in the target dataset to reconstruct word

corpora, taking advantage of such inherent features for improving

our seed corpora. In the following, we give the details of sampling

word distribution and reconstructing word corpora.

3.2.1 Sampling Words’ Distribution. Given the spam seed corpus

Ss , ham seed corpus Sh , and target dataset Dt , we aim to derive

a score for each word to represent the probability of a message

classified as a spam if it contains the word. We use si ∈ [0, 1] to

denote such a score for each word i while using L to denote the

label of a message, i.e., L = 1 for a spam message and L = 0 for

a ham message. Thus, if a messagemj contains the word wi , its

probability of being a spam is Pr (L(mj) = 1)) = si . Specifically,
if this score is close to 1, the message mj is more likely to be a

spam; otherwise, it is more likely to be a ham. For each word in

the spam seed or ham seed corpus, we set the spam scores to be

the constant values cs or ch , respectively, with 0.5 < cs ≤ 1 and

0 ≤ ch ≤ 0.5. For each of other words not in the seed corpora but in

the target dataset, si represents the posterior probability which will

be derived according to the distribution of a word presenting in the

final spam or ham datasets. Since the target dataset is unlabeled,

it is unrealistic to directly distinguish the spam and ham datasets

so as to calculate the words distribution (i.e., the frequency of a

word over the summation of all words’ appearance frequencies)

in each of these two datasets. The Gibbs sampling method [36]

is employed here to iteratively generate the sampling labels and

calculate the words’ distribution. We define a vector θL with the

size of V , in which each element corresponds to one word and

its entry represents this word’s distribution in the dataset labeled

with L. The sampling values of θ0 and θ1 can be generated by the

following five steps.

Step 1: Label Initialization. Denote Sr as the union of spam and

ham seed corpora, i.e., Sr = Ss ∩ Sh . The probability pj of message

mj being labeled as a spam is calculated by

pj =

∏
wi ∈Sr∩Sj s̄i∏

wi ∈Sr∩Sj s̄i +
∏

wi ∈Sr∩Sj (1 − s̄i)
, (4)

where pj is a posterior probability of Bayesian inference [17] and Sj
represents the set of stem words in messagemj . Notably, for each

wordwi in Sr , the spam score s̄i has been set to a constant value.

Assume each message follows Bernoulli trial and we randomly label

mj as a spam with the probability of pj . If all words frommj are not

in the seed corpora,mj is designated as a spam with the probability

of 0.5.

Step 2: Word Distribution Initialization. With the labels from

Step 1, the target dataset splits into two datasets, with one for spam

and the other one for ham. In each one, we count the total number

of included messages, denoted as C0 and C1 for ham and spam,

respectively. Meanwhile, we count the frequency of each word

occurring in each dataset and use the vector FL sized V to record

all words’ frequencies in dataset labeled as L, where each element

corresponds to one word. With FL , we can initialize θ0 and θ1.

Step 3: Updating Labels. This step repeats. In each iteration, we

select one messagemj with the label of l . We count the frequency

of each word in mj and update vector F l by subtracting such a

frequency value from the corresponding term. We removemj from

dataset at hand and updateCl by subtracting the message count by

1, i.e., Cl = Cl − 1. Before relabeling this message, we calculate the

likelihood of such a message as spam or ham, respectively, without

considering the spam/ham seed, denoted as vL(L = 1 or L = 0):

vL =
CL + βπL

C0 +C1 + βπ 1 + βπ 0 − 1

∏
wi<Sr ,wi ∈Sj

(θL(i))
σji , (5)

where βπ 1 and βπ 0 represent the initialized hyper parameters of

Beta distribution corresponding to spam and ham datasets, respec-

tively. Referred to as the shape parameters of the Beta distribution,

βπ 1 and βπ 0 are set to the uniform distribution. θL(i) represents
the respective value of wi in θL , i.e., the current distribution of

word wi in the dataset labeled as L. σji is the frequency of word

wi occurring in message mj . Since each message is assumed to

follow the Bernoulli trial [26] for designating as a spam or ham, the

probability of one messagemj to be a spam is calculated as follows:

p =
v1 ·

∏
wi ∈Sr∩Sj

2t√s̄i

v1 ·
∏

wi ∈Sr∩Sj
2t√s̄i +v0 ·

∏
wi ∈Sr∩Sj

2t
√
(1 − s̄i)

, (6)

where t is the number of sampling iterations. Then, we can assign

a new label
¯l tomj with the probability of p being designated as a

spam. Then, we add this message to the respective dataset according

to the new label and increase the total count of messages in this

dataset by 1, i.e.,C¯l = C¯l +1. F l and θ l are also updated accordingly.
This step is iteratively executed till all messages are selected.

Step 4: Updating Word Distribution Vectors. We assume all

words distribution can be modeled as the Dirichlet distribution

in both spam and ham datasets [25]. Assume there is a total of

V words in the target dataset, then the Dirichlet distribution can

be considered as the V dimensional distributions. Let’s define a V
dimensional vector tL with each entry tL(i) = FL(i) + γθL (i), where

FL(i) is the frequency value corresponding towi in FL and γθx (i)
is a hyperparameter of word wi . Note that γθx (i) is added to the

number of observed cases to avoid 0 observation in the dataset

labeled with L, with its value set to 1 in general [36]. Then, we can

sample θL as θL ∼ Dirichlet(tL), where Dirichlet represents the

Dirichlet distribution. We denote ⟨yL(1), ...,yL(V)⟩ as the sample

of V words’ frequencies and draw such V independent random

samples from Gamma distribution, each with the density of

Gamma(tL(i), 1) =
y
tL (i)−1

L (i)e−yL (i)

Γ(tL(i))
, (7)

where Γ represents theGamma function. The values of ⟨yx,1, ...,yx,V ⟩
can be sampled via above Gamma distribution. Each value θL(i) in
the sampling vector θL can be calculated by

θL(i) =
yL(i)∑V
j=1

yL(j)
. (8)

Step 5: Recording θ0 and θ1. We store the current sampling vec-

tors θ0 and θ1 and go back to Step 3. Step 3, Step 4, and Step 5 repeat
until the average values of all elements in θ0 and θ1 converge.

3.2.2 Scoring Each Word. The aforementioned procedure can iter-

atively generate a series of samples and score them. We have stored

the corresponding θ0 and θ1. Let θ
k
L denote the stored vector θL in

the k-th iteration. These sampling values can be used to calculate

the spam score of each word by averaging the overall probability

of a word in θ0(i) and θ1(i) from all iterations, i.e., for each word

wi < Sr , the spam score si is calculated as follows:

si =
1

K

∑
k

θ
(k)
1

(i)

θ
(k)
1

(i) + θ
(k)
0

(i)
, (9)

where K represents the total number of sampling iterations.

3.2.3 Reconstructing Spam and Ham Word Corpora. After getting
the spam scores of all words, we reconstruct the spam and ham

word corpora that can better capture the spam and ham patterns,

respectively. A word with a higher spam score means that any

message containing it has a higher probability of being a spam. We

rank the spam scores of all words and set a threshold to reconstruct

the spam and ham corpora. In particular, we set a spam threshold

to be 0.8 and collect all words with spam scores higher than 0.8 to

serve as the new spam corpus. Meanwhile, the ham threshold is set

to 0.4, with all words having the spam scores below 0.4 chosen to

serve as the new ham corpus. When scoring words in seed corpora,

we may initialize a word with higher score if it is deemed spam-

prone; otherwise, we set it with a lower score. In the late case, the

sampling process in Section 3.2 can help to find some other spam

words with higher confidence. Up to this point, we have addressed

reconstructing two more confident spam and ham corpora, with

each word in the two corpora being associated with a spam score.

3.3 Training SpamWord Model
The reconstructed spam and ham corpora as well as their accompa-

nying spam scores serve as the labeled dataset for training a spam

word model. Such a model can be put to use for encoding each

future message with a set of spam scores. To this end, we adopt

a neural network (NN) model for training the latent patterns by

means of encoded words. As the NN model takes the high dimen-

sional vectors as its input, we first have to encode each word in

the reconstructed corpora via a high dimensional vector. Here, we

employ the natural language processing (NLP) model to encode

each word into a high dimensional vector for richly mining latent

patterns. For example, for any two words having similar syntactic

or semantic patterns, the NLP model will output alike vectors. This

is critically important in capturing drift spammer patterns.

NLP Model Selection. There exist a cluster of NLP models that

aim to get word encoding vectors, like word2vec [27], GloVe [33],

and others, which are well trained for directly embedding all words

into the high dimensional vector space. The embedded vectors then

represent the syntactic (structural) and semantic (meaning) patterns

of words from the respective words corpus. Such NLP models are in

an unsupervised manner, therefore applicable to train our model for

encoding the word vectors. However, this way is time-consuming

unnecessarily without any performance guarantee. Instead, we rely

on pre-trained models to get the encoded high dimensional vector

of each word. There are lots of NLP models trained specifically for

different platforms, such as SMS [57], Email [20], and Twitter[22].

Our empirical study has unveiled that these NLP models can be

used across different platforms. Here, we select the model trained

from Twitter corpus [33] to serve as our NLP model, which covers

huge amounts of both normal and spam words.

WordVector Extraction. The selected NLPmodel has a dictionary-

like format, allowing us to look up the corresponding vector of

a given word. This vector is then labeled with the spam score

associated to the respective word. Each returned vector is denser,

which thus covers a set of words that have a similar structure or

meaning. In the case for a spammer to substitute one spam word

with another similar one in order to evade detection, the dense

vector can still cover it due to vector similarity. If the selected NLP

model fails to recognize some words present in the reconstructed

word corpora, we encode them with the “unknown” vectors and

reassign high scores to them, since they tend to be spam words.

Training Spam Word Model. The dense vectors (denoted as v)
of all words in the reconstructed word corpora and their associated

spam scores can be considered as the labeled ground-truth dataset

to train our employed neural network for in-depth learning on

inherent relationships among those dense vectors, with an aim

at generating a spam word scoring model. We consider a simple

five-layer neural network model, including one Input layer, three
Hidden layers, and one Output layer. The Output layer adopts the
standard sigmoid function, with a cross-entropy loss minimized by

the gradient descent on the function output.

3.4 Outlier Detection
With the trained spam word model, we are ready to employ it for

predicting all words’ spam scores in the target dataset and to encode

each message for the use of outlier detection.

Pre-processing Target Dataset. In Section 3.1, we have mined the

stemwords from eachmessage and stored them in Si = {w1,w2, · · · }.

We then use the selected NLP model to look up the dense vector of

each word in Si . If a word does not appear in the NLP model, it is

encoded with an “unknown” vector and assigned to a high spam

score. Each message is thus represented in the following format,

M = {v1, v2, ...}, where vi represents the dense vector of a corre-
sponding wordwi . The trained spam word model from Section 3.3

is used to predict the spam score of each dense vector vi , say si .
The message is represented by a list of scores, with each element

holding the value of corresponding word’s spam score. We rank all

spam scores in this vector and truncate each list to 10 elements, with

0 as padding values if the list includes less than 10 elements, . Then,

a message is converted in the form of scores list s = {s1, s2, ..., s10}.

Outlier Detection. With encoded spam scores for each message,

we employ the Magnitude outlier from the prominent outlier detec-

tion method [7], to expose the outlier property of spam messages.

Let S = {s1, s2, ..., sN } denote the encoded functional data for all

messages in the target dataset. To reveal the magnitude outlier char-

acteristic of a message with its encoded vector of s, we calculate the
intercept (denoted as α̂ j) and slope (denoted as

ˆβj) of the linear re-
gression model of s in discrete version over each of other messages’

encoding sj ∈ S. The intercept α̂ j is expressed by α̂ j = s̄ − ˆβj s̄j ,
where s̄ and s̄j are the average values of all spam scores in s and sj ,

respectively, and
ˆβj is the slope, defined as:

ˆβj =
Cov(s,sj)
Var(sj)

, where

Cov(s, sj) is the covariance between s and sj and Var(sj) is variance
of sj . The magnitude index of each message can be calculated by:

Im (s,S) =

������ 1n n∑
j=1

α̂ j

������ . (10)

After deriving the magnitude indices of all messages, we can rank

index values from the largest to the lowest. The spam messages’

property will be exposed to appear with larger values than non-

spam messages in general.

4 EXPERIMENTS
We implement our platform-oblivious detection system and conduct

extensive experiments to evaluate its performance. Themain goal of

this section is twofold. First, we run our system on different datasets

from three social platforms and classify their respective spams to

show its effectiveness in exposing spams’ outlier property. Second,

we compare our system with existing supervised and unsupervised

methods in terms of spam classification performance. Besides, the

necessity of each design component and the impacts of various

parameters are also evaluated.

4.1 Implementation
System Settings. We screen the spam and ham seed corpora from

the messages with top 1% ALER and MCER measures, respectively,

in the target dataset. Notably, the selection of 1% shall be validated

in Section 4.5. The spam and ham scores are set to be 0.8 and

0.4, respectively, in the seed corpora. Such two thresholds are also

applied to identify the spam and ham words in the reconstruction

of new word corpora. The dimension of embedded word vectors is

the same as pre-trained NLP model [33], i.e., 25. The neural network

model parameters adopted in Section 3.3 are given in Table 1. In the

output layer, the mean squared error (MSE) is employed as the loss

function, i.e., MSE = 1

n
∑n
i (si − ŝi)

2
, where n is the total number of

words in both reconstructed spam and ham corpora, si is the spam
score of a wordwi , and ŝi represents its predicted score.

Table 1: Parameters of the neural network model

Layer Type Drop off rate # of Neurons

Input 25

Fully Connected ReLU 0.5 64

Fully Connected ReLU 0.3 32

Fully Connected ReLU 0.1 8

Output 1

Table 2: The spams, hams, and spam ratios of four datasets

dataset Size Spam Ham Spam Ratio

Kaggle SMS 5,572 747 4,825 13.4%

Metsis Email 20,681 4,146 16,545 20.0%

Twitter Trending 677,938 108,470 569,468 16.0%

Twitter Normal 5,823,230 355,217 5,468,013 6.1%

Datasets. We conduct experiments on 4 real-world datasets from

three platforms, i.e., SMS, Email, and Twitter, depicted as follows.

• Kaggle SMS dataset [5] is a set of human-labeled cell-phone

messages collected for research. There are a total of 5, 574

messages included, with each message labeled by a “ham”

(legitimate) or “spam” tag. Our experiment uses all messages

in this dataset for evaluation.

• Metsis Email Dataset [26] is a dataset including the email

sources from Enron dataset, SpamAssassin corpus and others.

We take the labeled 16, 545 ham and 4, 136 spam emails for

our experiments.

• Twitter Trending Dataset [2] includes a total of 677, 938 tweets,

collected in 2019, with focus on users who posted trending

topics. A total of 108, 470 tweets are labeled as spams via the

diversified approaches [61]of checking suspended accounts,

clustering, and the rule-based method to pre-process the raw

dataset and then performing manual checking.

• Twitter Normal Dataset [1] covers 2.5 million users collected

from Twitter networks in 2019. There are a total of 5, 823, 230

labeled tweets, in which 355, 217 of them are labeled as spams

via the same approach as in [61] with the combination of

several approaches and the manually checking is finally con-

ducted.

Table 2 summarizes the statistical information of the four datasets.

Compared Methods. We compare our solution to the existing

both unsupervised and supervised methods on spam detection. The

unsupervised methods include Alien-l and Alien-s [30], OUSLD [34],
JSF [58], Hashing [12], and Gibbs [15], in which Alien-l and Alien-s

are outlier-basedmethods. The supervisedmethods include Bayesian
Inference [37], C4.5 [16], AdaBoost [60], SVM [48], and Neural Ne-
towrk (NN) [10].
Evaluation Metrics. We evaluate the performance of spam detec-

tion by using such standard metrics as recall (Rec = DS ′
TS), precision

(Prs = DS ′
DS), and F1 score (F1 = 2 × Rec×Prs

Rec+Prs), whereTS represents

the number of spams in the dataset, DS denotes the number of

detected spams, DS ′ means the number of detected spams that are

indeed spams (i.e. true spams).

(a) Kaggle SMS Dataset (b) Metsis Email Dataset

(c) Twitter Trending Dataset (d) Twitter Normal Dataset

Figure 7: The ranking of outlier scores of all messages.

O
ut

lie
r V

al
ue

k j

y

x
Outlier Ranking

Figure 8: The Lorenz curve and its three zones, colored in
orange, yellow and blue to indicate the SpamZone,Uncertain
Zone, and Ham Zone, respectively.

4.2 Outlier Exposure
We implement our proposed system with the setting in Section 4.1

and run it on four target datasets. The outlier results are ranked

from the largest values to the lowest. Figures 7(a), (b), (c), and (d)

show the ranked results from the datasets of Kaggle SMS, Email,

Twitter Trending, and Twitter Normal, respectively, where the x-
axis represents the ranking indices and the y-axis represents the
outlier scores from our system. Red cross and blue points signify

spam and ham, respectively. These figures exhibit our method can

expose the outlier property of spam messages in all four datasets,

where most of the spam messages have higher scores than ham

messages, resided in the leftmost parts.

Although the outlier property is visible, how to set a threshold

for effectively separating spams from hams is still a challenging

Table 3: Spam counts and ham counts in the Spam Zone, Un-
certain Zone, and Ham Zone from each dataset

Dataset Spam Zone Uncertain Zone Ham Zone

Label Ham Spam Ham Spam Ham Spam

Kaggle SMS 21 311 339 320 4465 116

Metsis Email 394 1966 893 1376 15258 1492

Twitter Trending 7640 33424 40625 42591 532082 21576

Twitter Normal 20573 110154 86992 137683 5360448 107380

0.0 0.1 0.2 0.3
Spam threshold values

0.00

0.25

0.50

0.75

1.00

V
al

u
e

precision

recall

F1-score

Figure 9: The performance of our system in Kaggle SMS
dataset with various spam threshold values.

problem. Here, we propose a novel solution for intelligently identi-

fying a suitable spam threshold value to single out spam messages.

As the curves of all ranked values in Figure 7 follow exponential

ones, we regress ranked values according to an exponential func-

tion, i.e., L = e−
a−F
b , where a and b are the parameters to fit the

ranked outlier values. F is the ranking value for a given outlier

score. This regression curve is also called Lorenz curve [14]. The

Lorenz curve of ranked outlier scores depicted in Figure 7(a) is

illustrated in Figure 8. With this curve, we take the leftmost point

that has the highest score and draw a tangent line at this point,

which intersects with the x-axis at a point k . Any point left to k
will be considered as an outlier. We define the region left to point k
as the Spam Zone, colored in orange in Figure 8. We draw another

tangent line of the Lorenz curve with the slop of −1, and assume it

intersects with the x-axis at point j . The region between the points

of k and j is defined as the Uncertain Zone, while the region at the

right of j is denoted as the Ham Zone. Uncertain Zone and Ham
Zone are colored in yellow and blue, respectively. Table 3 shows

the number of spams and hams in each region of every dataset. For

the messages in Spam Zone and Ham Zone, we are confident to tell

them as spams and hams, respectively. However, the messages in

Uncertain Zone are hard to be classified surely. If we assume 50%

of messages in the Uncertain Zone are spams, the spam ratio in a

target dataset, denoted as R, can be estimated by: R = n1+0.5∗n2

N ,

where n1 and n2 refer to the message counts in Spam Zone and
Uncertain Zone, respectively. N is the total number of messages

in the target dataset. Based on our estimation, the spam ratios of

four target datasets are 11.9%, 16.9%, 12.2%, and 4.1%, respectively.

When compared to the true spam ratios of target datasets, i.e., 13.4%,

20.0%, 14.6%, and 6.1%, respectively, from Table 2, our estimated

spam ratios are very close to the true values.

Figure 9 shows the values of precision, recall, and F1 score under

different threshold values for the outlier ranking curve, for the

Kaggle SMS dataset. It also exhibits the best performance to result

from the threshold of around 11% to 13%, very close to the true

spam ratio (i.e., 13.4%) and the estimated spam ratio (i.e., 11.9%).

It implies the estimated spam ratios from our proposed solution

can be safely employed by our system to filter out outlier spams

effectively. In the following experiment, the threshold values for

distinguishing spams among outlier ranking values are set to be

11.9%, 16.9%, 12.2%, and 4.1%, respectively, for datasets of Kaggle

SMS, Metsis Email, Twitter Trending, and Twitter Normal.

4.3 Performance Comparison
We conduct extensive experiments on the four aforementioned

datasets to compare our method with the existing unsupervised

and supervised methods listed in Section 4.1.

Comparing to Unsupervised Methods. We run the existing un-

supervised methods and our outlier method for 10 times on each

dataset and calculate the averaged values of precision, recall, and

F1 score. Table 4 lists the complete results of our method and of

existing unsupervised solutions on four datasets. We observe our

method has the precision and recall of 89.6%, 79.4%, of 85.2%, 71.2%,

of 88.7%, 82.6%, and of 85.1%, 78.4%, respectively, for the Kaggle

SMS, Metsis Email, Twitter Trending, and Twitter Normal datasets.

When comparing to other unsupervised solutions, our solution

is observed to clearly outperform in terms of three performance

metrics, except for the recall measure of Gibbs under Metsis Email

dataset. This demonstrates the advantage of our method in terms of

performance improvement. The reason is that our method explores

the generating process of data, by iteratively refining data for use.

Since a generative model renders a better learning capacity over a

discriminative model [31], our method is thus able to capture spam

patterns more precisely.

Comparing to SupervisedMethods. We run the supervised meth-

ods listed in Section 4.1 on all four datasets via varying the ratio

of training set over test set (denoted as r) from 1 : 10 to 1 : 1

for comparison with our method. Due to the page limit, we only

include the detailed results from the Twitter Normal dataset un-

der various ratios of training set over test set, as listed in Table 5.

In the experiment, we keep the test set size as 1 million, and in-

crease the training set from 0.1 million, 0.2 million, 0.33 million,

0.5 million to 1 million. The corresponding ratios of training set

size over to test set size (i.e., r) are 1 : 10, 1 : 5, 1 : 3, 1 : 2 and

1 : 1. From this table, we observe the performance of all supervised

methods improves with the increasing of r , i.e., the increasing of
training set size. However, the results of our solution do not change

since it is an unsupervised method, without relying on the training

dataset. It is also observed that when r = 1

10
, r = 1

5
and r = 1

3
,

our method can beat all supervised methods in terms of all three

performance metrics. When r = 1

2
, our solution still outperforms all

supervised solutions in terms of recall. For precision, all the super-

vised methods except SVM outperform our method. When r = 1, all

supervised methods outperform ours in at least two metrics. These

results demonstrate that all supervised methods highly rely on the

training set size, with their performance level rising for a bigger

training set size. However, in a large dataset, it is impractical to

Table 4: Comparisons of precision and recall under our solution and under unsupervised methods for all four datasets

Dataset Kaggle SMS Metsis Email Twitter Trending Twitter Normal

Metric (%) Prs Rec Prs Rec Prs Rec Prs Rec

Alien-l [30] 79.4 51.1 82.2 59.4 79.4 53.3 74.1 60.6

Alien-s [30] 78.9 52.9 81.8 51.5 78.5 56.3 77.9 58.5

OUSLD [34] 54.4 42.5 58.2 57.9 61.1 51.4 60.0 52.5

JSF [58] 50.7 44.6 70.7 34.9 60.6 44.4 57.7 38.7

Hashing [12] 39.7 41.4 39.5 37.1 41.5 44.1 46.3 47.2

Gibbs [15] 64.5 55.0 63.9 72.0 45.2 67.1 51.5 66.2

Our Method 89.6 79.4 85.2 71.2 88.7 82.6 85.1 78.4

Table 5: Comparisons of supervised methods and our solu-
tion with various ratios of training set over test set, with the
size of test set fixed to 1 million

r Metric (%) Bayes C4.5 Ada SVM NN Ours

1

10

Prs 80.2 73.2 76.5 73.9 77.4 84.4
Rec 32.0 37.4 48.6 10.3 24.3 77.4

1

5

Prs 81.8 79.6 81.0 75.3 78.9 84.4
Rec 38.5 44.9 52.5 10.3 23.8 77.4

1

3

Prs 82.5 80.8 83.1 78.4 79.3 84.4
Rec 48.1 50.2 58.2 13.5 44.7 77.4

1

2

Prs 84.6 87.0 87.4 83.3 85.5 84.4

Rec 63.6 61.5 60.1 66.7 71.2 77.4
1

1

Prs 88.0 84.7 91.5 85.1 90.6 84.4

Rec 74.5 72.1 81.3 74.4 78.4 77.4

Table 6: Comparisons of the supervised solutions and our
solution with various sizes of test dataset

Size Metric (%) Bayes C4.5 Ada SVM NN Ours

10k

Prs 89.4 89.2 90.5 87.2 90.6 85.5

Rec 71.5 71.1 72.2 65.7 73.5 71.6

20k

Prs 85.1 83.9 83.7 83.5 85.5 85.3

Rec 64.4 67.5 66.2 59.3 71.2 70.3

30k

Prs 84.7 83.1 82.6 83.2 85.2 85.3
Rec 63.5 60.2 62.4 53.6 70.9 71.0

50k

Prs 83.2 81.3 82.2 81.4 83.1 85.7
Rec 61.2 55.8 61.2 43.5 67.2 72.2

reliably label 50% (i.e., r = 1

1
) of dataset for training, since doing

so may bring excessive human overhead. In contrast, our method

does not require any ground truth labeling, but can still achieve

moderate performance.

We next conduct experiments by fixing the training set size and

varying the test set sizes to compare the performance of supervised

solutions and our method. We take the Twitter Trending dataset as

an example and select 10, 000 labeled tweets, i.e., 1, 446 spam and

8, 554 ham messages, to serve as the training set. Table 6 shows the

results of all supervised solutions and our method, with the test set

size growing from 10, 000 to 50, 000. We observe the performance

of our method fluctuates only slightly as the test set size grows,

whereas all supervised counterparts suffer from fast performance

degradation on all metrics with an increase in the test dataset

Table 7: Results of Ablation Studies

Metrics (%)

Model

Seed Gibbs N LP Ours

Prs 62.6 48.3 68.5 85.2
Rec 71.7 51.4 70.1 71.2

size. This demonstrates the robustness of our proposed solutions.

Specifically, when the test set size exceeds 30k, our method almost

beats all examined supervised solutions.

4.4 Importance of Each Design Component
We conduct the ablation studies to evaluate the necessity and im-

portance of each component in our design. In particular, the com-

ponents of Seed Collection, Word Copra Reconstruction, and Spam
Word Model, corresponding to Sections 3.1, 3.2, and 3.3, respec-

tively, will be removed in turn, as design variants to evaluate the

performance of the remaining system. The three corresponding

variants are denoted as Seed , Gibbs , and NLP , respectively. Ta-
ble 7 presents the evaluation results (i.e., Precision and Recall) of

Seed , Gibbs , and NLP under the Metsis Email dataset. From this

table, we observe that all three variants perform worse than our

complete system in terms of precision. Regarding the recall, our

system performs markedly better than Gibbs , slightly better than

NLP , but marginally worse than Seed . However, considering both
precision and recall metrics, which are important to signify the

overall classification performance, we can conclude that all design

components are necessary and important in contributing to our

system performance.

4.5 Impact of Seed Threshold
We conduct experiments to show the impact of various threshold

values for ALER and MCER on our system performance. Figure 10

shows the F1 scores of our system under various ALER and MCER

thresholds, ranging from 0.2% to 10%. Notably, ALER and MCER

are always set to the same value. From this figure, we can see our

system performance on Twitter Trend and Twitter Normal datasets

fluctuates only slightly when the threshold values increases from

0.2% to 10%, with most F1 scores being higher than 0.75. The reason

is that the two datasets are large, so even when the threshold values

rise to 10%, most of selected seeds are indeed spam or ham words.

On the other hand, for the two small datasets Metis and SMS, an

0 1 2 3 4 5 6 7 8 9 10
theshold %

0.0

0.2

0.4

0.6

0.8

F
1

sc
or

e
SMS

Metsis

Trend

Normal

(a)

Figure 10: F1 scores of our system on four experimented
datasets when varying the thresholds values of ALER and
MCER measurement from 0.2% to 10%.

increase in threshold values will significantly degrade our system

performances, since a large threshold value leads to a high false

positive rate of spam seed corpus, thus substantially misleading

the remaining processing in our system. But from the four datasets,

whose sizes range from 5, 574 to 5, 823, 230, our system can always

achieve high F1 score values when setting the threshold value to 1%.

As such, considering the dataset size may vary widely in practice,

we believe it is safe to uniformly set the threshold values of ALER

and MCER as 1%.

4.6 Impact of Word Richness
From Table 4, we observe that our solution performs differently

across 4 target datasets. By analyzing the datasets, we find the

difference resulting from unique words included in the datasets.

We thus explore how the unique word count affects our system

performance, by taking Kaggle SMS and Metsis Email datasets

as the examples, which contain 6,300 and 78,000 unique words,

respectively.

Figure 11 (a) and Figure 11(b) depict the trends of spam model

training accuracy and our solution’s F1 scores as the unique word

counts increase in Kaggle SMS and Metsis Email datasets, respec-

tively. We observe the spam model training accuracy keeps decreas-

ing with an increase in the unique word counts. The reason is that

given more unique words, the regression task in the neural network

model becomes more difficult. This degrades the accuracy of our

spam word model.

On the other hand, it is found that when the number of unique

words is small, the F1 scores of our solution keep improving with

an increase in the unique word count in both datasets. The reason

is that if the number of unique words is small, the Gibbs sampling

method employed in Section 3.2 is likely to overfit these words,

causing the model to suffer from low generalization. It misleads to

wrong spam scores in the spam model training phase, thus making

our system perform poorly. With more words included, this over-

fitting problem can be alleviated to help improve the performance

0 2000 4000 6000
of unique words

40

60

80

100

V
al

u
e

(%
)

Spam model training accuracy

Outlier detection F1-score

(a) Kaggle SMS dataset

0 20000 40000 60000
of unique words

40

60

80

V
al

u
e

(%
)

Spam model training accuracy

Outlier detection F1-score

(b) Metsis Email dataset

Figure 11: Impact of word richness in the target dataset.

of our solution. However, when the unique word count becomes

excessive, i.e., around 40,000 in Figure 11 (b), the Gibbs sampling

method is likely to be saturated. In this situation, two words that

are semantically or syntactically different may be forced to merge

into the same distribution and thus to assign with similar spam

scores. This will mislead our system, lowering the F1 score.

5 RELATEDWORK
Existingworks in spam detection can be categorized into supervised,

semi-supervised, and unsupervised methods.

Supervised Machine Learning methods rely on the ground truth

dataset to let a machine learning classifier learn the latent patterns

of spammers for classification. Extensive works are based on the

fact that spammers and normal users behave differently, making

it possible to extract effective features that can reveal such differ-

ences for the machine learning classifiers to learn latent patterns.

These features include, but are not limited to, user profiles [13],

user behaviors [23], message contents [21, 54], user relationships

[9, 49, 62]. Feature extraction also becomes prevalent in other ma-

chine learning-based applications such as fake review or news

detection [32, 40, 53], rumor detection [19, 63], etc. However, ef-

fective feature extraction has been well known as a challenging

problem, especially if we aim to leverage them across different so-

cial platforms. Moreover, all of the aforementioned works require to

have large-sized reliable ground truth datasets. It has been widely

recognized that acquiring a large-sized reliable ground truth dataset

is a challenging and painful problem. More importantly, some re-

search [29, 44, 52, 55] have realized that the supervised methods

may encounter substantial performance degradation when classify-

ing the imbalanced data (like spam messages only occupy a small

portion).

Semi-Supervised Learning methods [11, 18, 24, 64] have been

proposed to relax the reliance on the ground truth dataset. For

example, Zhou et al. [64] explored the supervision power from

multiple classifiers, where a labeling query occurs only if all clas-

sifiers are comparably confident on a disagreed unlabeled sample.

Chen et al. [11] proposed an asymmetric self-learning approach

that extracts “changed spams” from incoming tweets. Liu et al. [24]
proposed a solution for extracting time-sensitive features to track

the feature change, and Imam et al. [18] used unlabeled data to

learn the structure of the feature space, helping to refine the result

from supervised classifiers. SpamGAN [42] was also proposed by

using both unlabeled and labeled datasets to train a GAN-based

spam review classifier. However, they still rely on a certain amount

of reliable ground truth datasets, which are not easy to acquire.

Unsupervised Methods aim to let the spam detection task free

from labeling effort. Several categories of unsupervised methods

have been explored, such as behavior-based, content-based, and

graph-based ones, for spam detection. In the behavior-based cat-

egory, Mukherjee et al. [28], and Wang et al. [51] have developed
unsupervised solutions based on the observation that spammers and

non-spammers behave differently, able to model such behavioral

disparities by such features as frequency of activities, crawl actions,

register duration, click behaviors, and others. In the content-based

category, the hash values of the first k N-grams [56], the document

complexity [46], locality-sensitive hashing [59], min-hash [12], and

Natural Language Processing [34] have been investigated. In graph-

based methods, the social network graph is leveraged and analyzed

to find the differences of spams and hams [35, 43, 50] . However,

existing unsupervised methods, in general, markedly underperform

their supervised counterparts. Moreover, they are tailored to spe-

cific platforms, making them unable to adapt to multiple platforms.

Outlier Detection belongs to the unsupervised category as well

and it relies on the fact that spammer’s patterns have significant

disparities versus those of the major data volume, thus possessing

the outlier property potentially. Some works have been proposed

to explore the outlier property through different technologies or

approaches, i.e., data density [38], density-based clustering methods

[8], principal component analysis (PCA) [39], combined artificial

bee colony and k-nearest neighbors [6], and P-value [47]. However,

the performance of all aforementioned approaches are unsatisfac-

tory, especially when applying to different platforms.

6 DISCUSSION
This work relies on the fact that the spam messages account for a

small portion in any social platform so that they can be exposed as

the outliers. This holds true for almost all social platforms, where

the existing anti-spam mechanisms have filtered the majority of

spam messages, leaving out only a small portion of spam mes-

sages to represent an even smaller fraction of messages that pass

anti-spam mechanism’s checking, as also affirmed by earlier re-

ports [3, 4, 41, 45]. This refers to the imbalanced data, where the

supervised methods typically encounter dilemma [29, 44, 52, 55]

when classifying the inside minority set (i.e., spam). Our work aims

to overcome this dilemma by proposing an effective unsupervised

solution, which can be integrated into the existing anti-spam mech-

anisms for further filtering spam messages.

Our solution can overcome the spammer feature drift problem

to some extent due to the following two design strategies. First,

we don’t rely on feature extraction from any labeled ground truth

dataset, and instead directly refine the spam and ham corpora ex-

isting in the target dataset. Second, for each word in the refined

spam and ham corpora, we embed it into a high dimensional vector,

which allows it to cover a richer set of words having similar syn-

tactic or semantic patterns. Even spammers evolve by substituting

some words with new ones in a spam, the resulting spam may still

yield a vector for successful detection as an outlier.

This work only focuses on the English-based social platforms. It

is interested for one platforms based on other languages, such as

Spanish, Chinese, Japanese, Korean, and others, leaving as an open

problem for future pursuit. On the other hand, our work targets text-

only spam in linguistic-based social platforms. It is also necessary

to develop a platform-oblivious solution to detect malicious images

from social platforms like Facebook and Instagram, whereas the

images take a large portion. This line of research will be deferred

in our future work.

7 CONCLUSION
This paper has proposed a novel platform-oblivious spam detec-

tion framework that can work effectively across multiple social

platforms to expose spams’ outlier property for accurate spam de-

tection. With new solutions developed to mine the spam and ham

seed corpora from the target dataset and to reconstruct the refined

corpora as the references for distinguishing spams from hams, our

framework avoids reliance on laborious ground truth labeling and

has the potential of capturing the spammer feature drift. Through

employing the NLP and neural network models to train a spam

word model, the framework can identify the words with similar

semantic and syntactic information, without relying on the feature

extraction employed by all previous supervised learning methods.

It encodes all messages in the target dataset efficiently for effec-

tive processing by the outlier techniques to expose spams’ outlier

property. The results from extensive experiments demonstrate that

our solution can indeed expose the outlier characteristics of the

vast majority of spams. In addition, it is exhibited to outperform all

examined unsupervised methods and can better supervised counter-

parts, with its performance kept consistently superior when applied

to multiple platforms.

ACKNOWLEDGEMENT
This work was supported in part by NSF under Grants 1763620,

1948374, and 2019511. Any opinion and findings expressed in the

paper are those of the authors and do not necessarily reflect the

view of funding agency.

REFERENCES
[1] Twitter normal dataset. https://drive.google.com/open?id=1y-

A0vOJ4amZ6P6oqjIryJKAoPItFbfWy.

[2] Twitter trending dataset. https://drive.google.com/open?id=1jfIdhjTUx_

gtbYXhW1QwMzhfnIv7NgFe.

[3] Facebook transparent report. https://transparency.facebook.com/community-

standards-enforcement#spam, 2020.

[4] Twitter transparent report. https://transparency.twitter.com/en/platform-

manipulation.html#platform-manipulation-jan-jun-2019, 2020.

[5] Almeida, T. A., Hidalgo, J. M. G., and Yamakami, A. Contributions to the study

of sms spam filtering: new collection and results. In 11th ACM Symposium on
Document Engineering (2011), pp. 259–262.

[6] Aswani, R., Ghrera, S., Kar, A. K., and Chandra, S. Identifying buzz in social

media: a hybrid approach using artificial bee colony and k-nearest neighbors for

outlier detection. Social Network Analysis and Mining 7, 1 (2017), 38.
[7] Azcorra, A., Chiroqe, L. F., Cuevas, R., Anta, A. F., Laniado, H., Lillo, R. E.,

Romo, J., and Sguera, C. Unsupervised scalable statistical method for identifying

influential users in online social networks. Scientific Reports 8, 1 (2018), 6955.
[8] Cao, F., Estert, M., Qian, W., and Zhou, A. Density-based clustering over

an evolving data stream with noise. In Proceedings of the SIAM International
Conference on Data Mining (2006), pp. 328–339.

[9] Cao, Q., Sirivianos, M., Yang, X., and Pregueiro, T. Aiding the detection of fake

accounts in large scale social online services. In Proceedings of the 9th USENIX
Conference on Networked Systems Design and Implementation (2012), pp. 15–15.

[10] Chan, P. P., Yang, C., Yeung, D. S., and Ng, W. W. Spam filtering for short

messages in adversarial environment. Neurocomputing 155 (2015), 167–176.
[11] Chen, C., Zhang, J., Xiang, Y., and Zhou, W. Asymmetric self-learning for

tackling twitter spam drift. In Proceedings of the IEEE Conference on Computer
Communications Workshops (2015), pp. 208–213.

[12] Concone, F., LO RE, G., Morana, M., and Ruocco, C. Twitter spam account

detection by effective labeling. In 3rd Italian Conference on Cyber Security, ITASEC
2018 (2019), vol. 2315.

[13] De Cristofaro, E., Kourtellis, N., Leontiadis, I., Stringhini, G., Zhou, S.,

et al. Lobo: Evaluation of generalization deficiencies in twitter bot classifiers. In

Proceedings of the 34th Annual Computer Security Applications Conference (2018),
pp. 137–146.

[14] Gastwirth, J. L. A general definition of the lorenz curve. Econometrica: Journal
of the Econometric Society (1971), 1037–1039.

[15] Giannella, C. R., Winder, R., and Wilson, B. (un/semi-) supervised sms text

message spam detection. Natural Language Engineering 21, 4 (2015), 553–567.
[16] Gómez Hidalgo, J. M., Bringas, G. C., Sánz, E. P., and García, F. C. Content

based sms spam filtering. In Proceedings of the ACM Symposium on Document
Engineering (2006), pp. 107–114.

[17] Huelsenbeck, J. P., and Ronqist, F. Mrbayes: Bayesian inference of phyloge-

netic trees. Bioinformatics 17, 8 (2001), 754–755.
[18] Imam, N., Issac, B., and Jacob, S. M. Semi-supervised learning approach for

tackling twitter spam drift. International Journal of Computational Intelligence
and Applications (2019).

[19] Jin, Z., Cao, J., Guo, H., Zhang, Y., and Luo, J. Multimodal fusion with recurrent

neural networks for rumor detection on microblogs. In Proceedings of the 25th
ACM International Conference on Multimedia (2017), pp. 795–816.

[20] Jlailaty, D., Grigori, D., and Belhajjame, K. Mining business process activities

from email logs. In Proceedings of the IEEE International Conference on Cognitive
Computing (2017), pp. 112–119.

[21] Kennedy, S., Walsh, N., Sloka, K., McCarren, A., and Foster, J. Fact or

factitious? contextualized opinion spam detection. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics: Student Research
Workshop (2019), pp. 344–350.

[22] Kim, J., Hong, T., and Kim, P. Word2vec based spelling correction method of

twitter message. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied
Computing (2019), pp. 2016–2019.

[23] Liu, B., Ni, Z., Luo, J., Cao, J., Ni, X., Liu, B., and Fu, X. Analysis of and defense

against crowd-retweeting based spam in social networks. World Wide Web (2018),
1–23.

[24] Liu, J. A time-sensitive spam filter algorithm dealing with concept-drift. In

Proceedings of the 4th International Conference on Machinery, Materials and Com-
puting Technology (2016).

[25] Madsen, R. E., Kauchak, D., and Elkan, C. Modeling word burstiness using the

dirichlet distribution. In Proceedings of the 22nd ACM International Conference on
Machine Learning (2005), pp. 545–552.

[26] Metsis, V., Androutsopoulos, I., and Paliouras, G. Spam filtering with naive

bayes-which naive bayes? In Proceedings of the CEAS (2006), vol. 17, pp. 28–69.
[27] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. Distributed

representations of words and phrases and their compositionality. In Proceedings
of the Advances in Neural Information Processing Systems (2013), pp. 3111–3119.

[28] Mukherjee, A., Kumar, A., Liu, B., Wang, J., Hsu, M., Castellanos, M., and

Ghosh, R. Spotting opinion spammers using behavioral footprints. In Proceedings

of the 19th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (2013), pp. 632–640.

[29] Mullick, S. S., Datta, S., Dhekane, S. G., and Das, S. Appropriateness of

performance indices for imbalanced data classification: An analysis. Pattern
Recognition 102 (2020), 107197.

[30] Narisawa, K., Bannai, H., Hatano, K., and Takeda, M. Unsupervised spam

detection based on string alienness measures. In Proceedings of the International
Conference on Discovery Science (2007), pp. 161–172.

[31] Ng, A. Y., and Jordan, M. I. On discriminative vs. generative classifiers: A com-

parison of logistic regression and naive bayes. In Advances in Neural Information
Processing Systems (2002), pp. 841–848.

[32] Nilizadeh, S., Labrèche, F., Sedighian, A., Zand, A., Fernandez, J., Kruegel, C.,

Stringhini, G., and Vigna, G. Poised: Spotting twitter spam off the beaten paths.

In Proceedings of the ACM SIGSAC Conference on Computer and Communications
Security (2017), pp. 1159–1174.

[33] Pennington, J., Socher, R., and Manning, C. D. Glove: Global vectors for

word representation. In Empirical Methods in Natural Language Processing (2014),

pp. 1532–1543.

[34] Qian, F., Pathak, A., Hu, Y. C., Mao, Z. M., and Xie, Y. A case for unsupervised-

learning-based spam filtering. In Proceedings of the SIGMETRICS (2010), vol. 10,
pp. 367–368.

[35] Rayana, S., and Akoglu, L. Collective opinion spam detection: Bridging review

networks and metadata. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (2015), pp. 985–994.

[36] Resnik, P., and Hardisty, E. Gibbs sampling for the uninitiated. Tech. rep.,

2010.

[37] Sahami, M., Dumais, S., Heckerman, D., and Horvitz, E. A bayesian approach

to filtering junk e-mail. In Proceedings of the Learning for Text Categorization:
Papers from the 1998 workshop (1998), vol. 62, pp. 98–105.

[38] Schneider, M., Ertel, W., and Ramos, F. Expected similarity estimation for

large-scale batch and streaming anomaly detection. Machine Learning 105, 3
(2016), 305–333.

[39] Sharan, V., Gopalan, P., and Wieder, U. Efficient anomaly detection via matrix

sketching. In Proceedings of the Advances in Neural Information Processing Systems
(2018), pp. 8069–8080.

[40] Shehnepoor, S., Salehi, M., Farahbakhsh, R., and Crespi, N. Netspam: A

network-based spam detection framework for reviews in online social media.

IEEE Transactions on Information Forensics and Security 12, 7 (2017), 1585.
[41] Somanchi, S. H. The mail you want, not the spam you don’t.

https://cloud.googleblog.com/2015/07/the-mail-you-want-not-the-spam-

you-dont.html, 2015.

[42] Stanton, G., and A. Irissappane, A. Gans for semi-supervised opinion spam

detection. In Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence (7 2019), pp. 5204–5210.

[43] Tan, E., Guo, L., Chen, S., Zhang, X., and Zhao, Y. Unik: Unsupervised social

network spam detection. In Proceedings of the 22nd ACM international conference
on Information & Knowledge Management (2013), pp. 479–488.

[44] Tian, J., Liu, Y.-C., Glaser, N., Hsu, Y.-C., and Kira, Z. Posterior re-calibration

for imbalanced datasets. In Proceedings of the Advances in Neural Information
Processing Systems (2020), vol. 33, pp. 8101–8113.

[45] TitanHQ. Spamtitan anti spam solution - block over 99.9

https://trust.titanhq.com/acton/media/31047/spamtitan-spam-filter-ma,

2021.

[46] Uemura, T., Ikeda, D., and Arimura, H. Unsupervised spam detection by

document complexity estimation. In Proceedings of the International Conference
on Discovery Science (2008), pp. 319–331.

[47] Vigliotti, M. G., and Hankin, C. Discovery of anomalous behaviour in temporal

networks. Social Networks 41 (2015), 18–25.
[48] Vishagini, V., and Rajan, A. K. An improved spam detection method with

weighted support vector machine. In Proceedings of the International Conference
on Data Science and Engineering (2018), pp. 1–5.

[49] Wang, B., Zhang, L., and Gong, N. Z. Sybilscar: Sybil detection in online social

networks via local rule based propagation. In Proceedings of the IEEE Conference
on Computer Communications (2017), pp. 1–9.

[50] Wang, B., Zhang, L., and Gong, N. Z. Sybilblind: Detecting fake users in

online social networks without manual labels. In Proceedings of the International
Symposium on Research in Attacks, Intrusions, and Defenses (2018), pp. 228–249.

[51] Wang, G., Zhang, X., Tang, S., Zheng, H., and Zhao, B. Y. Unsupervised

clickstream clustering for user behavior analysis. In Proceedings of the CHI
Conference on Human Factors in Computing Systems (2016), pp. 225–236.

[52] Wang, Y., Gan, W., Yang, J., Wu, W., and Yan, J. Dynamic curriculum learning

for imbalanced data classification. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (2019), pp. 5017–5026.

[53] Wu, K., Yuan, X., and Ning, Y. Incorporating relational knowledge in explainable

fake news detection. In Pacific-Asia Conference on Knowledge Discovery and Data
Mining (2021), pp. 403–415.

[54] Yao, Y., Viswanath, B., Cryan, J., Zheng, H., and Zhao, B. Y. Automated

crowdturfing attacks and defenses in online review systems. In Proceedings of

https://drive.google.com/open?id=1y-A0vOJ4amZ6P6oqjIryJKAoPItFbfWy
https://drive.google.com/open?id=1y-A0vOJ4amZ6P6oqjIryJKAoPItFbfWy
https://drive.google.com/open?id=1jfIdhjTUx_gtbYXhW1QwMzhfnIv7NgFe
https://drive.google.com/open?id=1jfIdhjTUx_gtbYXhW1QwMzhfnIv7NgFe
https://transparency.facebook.com/community-standards-enforcement#spam
https://transparency.facebook.com/community-standards-enforcement#spam
https://transparency.twitter.com/en/platform-manipulation.html#platform-manipulation-jan-jun-2019
https://transparency.twitter.com/en/platform-manipulation.html#platform-manipulation-jan-jun-2019

the ACM SIGSAC Conference on Computer and Communications Security (2017),

pp. 1143–1158.

[55] Yin, J., Gan, C., Zhao, K., Lin, X., Quan, Z., and Wang, Z.-J. A novel model for

imbalanced data classification. In Proceedings of the AAAI Conference on Artificial
Intelligence (2020), pp. 6680–6687.

[56] Yoshida, K., Adachi, F., Washio, T., Motoda, H., Homma, T., Nakashima, A.,

Fujikawa, H., and Yamazaki, K. Density-based spam detector. In Proceedings of
the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (2004), pp. 486–493.

[57] You, L., Li, Y., Wang, Y., Zhang, J., and Yang, Y. A deep learning-based rnns

model for automatic security audit of short messages. In Proceedings of the 16th
International Symposium on Communications and Information Technologies (2016),
pp. 225–229.

[58] Yu, J., and Jiang, J. A hassle-free unsupervised domain adaptation method

using instance similarity features. In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing (2015), pp. 168–173.

[59] Zhang, Q., Ma, H., Qian, W., and Zhou, A. Duplicate detection for identifying

social spam in microblogs. In Proceedings of the IEEE International Congress on

Big Data (2013), pp. 141–148.
[60] Zhang, X., Xiong, G., Hu, Y., Zhu, F., Dong, X., and Nyberg, T. R. A method of

sms spam filtering based on adaboost algorithm. In Proceedings of the 12th World
Congress on Intelligent Control and Automation (2016), pp. 2328–2332.

[61] Zhang, Y., Zhang, H., Yuan, X., and Tzeng, N.-F. Pseudo-honeypot: Toward

efficient and scalable spam sniffer. In Proceedings of the 49th Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks (DSN) (2019), pp. 435–
446.

[62] Zhang, Y., Zhang, H., Yuan, X., and Tzeng, N.-F. Tweetscore: Scoring tweets

via social attribute relationships for twitter spammer detection. In Proceedings
of the ACM Asia Conference on Computer and Communications Security (2019),

pp. 379–390.

[63] Zhao, Z., Resnick, P., and Mei, Q. Enquiring minds: Early detection of rumors

in social media from enquiry posts. In Proceedings of the 24th International
Conference on World Wide Web (2015), pp. 1395–1405.

[64] Zhou, Z.-H., and Li, M. Semi-supervised learning by disagreement. Knowledge
and Information Systems 24, 3 (2010), 415–439.

	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Motivation

	3 Platform-Oblivious Framework
	3.1 Seed Collection
	3.2 Reconstructing Words Corpora
	3.3 Training Spam Word Model
	3.4 Outlier Detection

	4 Experiments
	4.1 Implementation
	4.2 Outlier Exposure
	4.3 Performance Comparison
	4.4 Importance of Each Design Component
	4.5 Impact of Seed Threshold
	4.6 Impact of Word Richness

	5 Related Work
	6 Discussion
	7 Conclusion
	References

