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Abstract—The proliferation of IoT devices, with various capabilities in sensing, monitoring, and controlling, has prompted diverse
emerging applications, highly relying on effective delivery of sensitive information gathered at edge devices to remote controllers for
timely responses. To effectively deliver such information/status updates, this paper undertakes a holistic study of AoI in multi-hop
networks by considering the relevant and realistic factors, aiming for optimizing information freshness by rapidly shipping sensitive
updates captured at a source to its destination. In particular, we consider the multi-channel with OFDM (orthogonal frequency-division
multiplexing) spectrum access in multi-hop networks and develop a rigorous mathematical model to optimize AoI at destination nodes.
Real-world factors, including orthogonal channel access, wireless interference, and queuing model, are taken into account for the very
first time to explore their impacts on the AoI. To this end, we propose two effective algorithms where the first one approximates the
optimal solution as closely as we desire while the second one has polynomial time complexity, with a guaranteed performance gap to
the optimal solution. The developed model and algorithms enable in-depth studies on AoI optimization problems in OFDM-based
multi-hop wireless networks. Numerical results demonstrate that our solutions enjoy better AoI performance and that AoI is affected
markedly by those realistic factors taken into our consideration.
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1 INTRODUCTION

The prosperity of Cyber-Physical Systems (CPS) and Inter-
net of Things (IoT) has prompted diverse emerging appli-
cations in smart cities, intelligent transportation systems,
automatic industrial plants, weather forecasting, among
others. Deployments of such emerging applications often in-
volve many edge devices (e.g., sensors) scattered across the
covered areas, and their backbones lie in punctual delivery
of sensitive information/updates gathered by these devices
for the receivers of interest, where the multi-hop relays are
necessary to extend the network coverage to a wide area.
For instance, in a weather forecasting system, numerous
wireless devices can be deployed across a broad area that
is far away from the emergency control center. Due to the
proliferation of these edge devices with various capabilities
in sensing, monitoring, and controlling, in support of those
applications, we have witnessed mounting challenges for
data gathering and delivery to remote controllers for timely
responses, especially when the devices involved are diverse
and the device count rises.

To measure the timely information updates, a suitable
performance metric that reflects information updating time-
liness (i.e., freshness) has been introduced [1], [2] and ex-
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ploited lately, known as Age of Information (AoI). Defined
as the time elapsed since the generation time of the most
recently received packet at a destination node, AoI is utterly
a proper metric of choice to quantify information freshness.
For instance, at time t, the freshest update delivered at
the destination node was generated at G(t), the AoI is
calculated as t−G(t). Such a new metric is starkly different
from the conventional metrics of overall throughput and
packet delay [2], which characterize the effectiveness of a
data collection and transfer system but fail to capture the
time-critical information updates at an individual receiver.
From this point of view, AoI is substantially distinct from
delay, as its variation characterizes dynamism in informa-
tion updating. The previous works [1], [2], [3] also have
demonstrated that optimizing AoI is fundamentally differ-
ent from minimizing delay.

Up till now, AoI has been explored mostly in very simple
network settings, i.e., single-hop networks [1], [2], [3], [4],
[5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18], [19], [20]. Limited pursuit in multi-hop networks
deals merely with either the special network topology [21],
[22], [23], [24], [25] or abstracted network settings [26], [27],
[28]. The problem of how to minimize AoI in a multi-
hop network remains open, especially when taking into
account such realistic physical world factors as channel
access techniques, wireless interference, link scheduling,
among others. These realistic factors are of critical impor-
tance in transforming AoI from a concept to the real-world
applications. To date, there are no prior results on AoI
optimization for multi-hop networks with realistic factors
taken into consideration.

This paper aims to advance the theoretical foundation of



AoI in multi-hop wireless systems. It addresses the multi-
hop wireless networks with the widely adopted channel ac-
cess modulation, i.e., orthogonal frequency-division multi-
plexing (OFDM), for the first time, while taking into account
relevant realistic factors so as to capture their impacts on AoI
at destination nodes. In OFDM-based multi-hop networks,
the channel allocation, interference, and queuing model are
key factors to determine their AoI outcomes. By modeling
both the arrival and the service processes at each node, we
develop a mathematical model to capture the relationships
of these realistic factors and AoI. The mathematical formula
of AoI derived theoretically allows us to address AoI mini-
mization in OFDM-based multi-hop networks.

As our developed optimization problem is in the form of
mixed integer non-linear programming (MINLP), we pro-
pose two approximate algorithms to solve it efficiently. In
the first algorithm, we employ the piece-wise linearization
technique to transform the non-linear AoI formula into a
set of linear constraints, enabling us to use the commercial
solver to tackle it. By pre-setting a small error bound, this
algorithm can find a solution very close to the optimal
one. However, the linearized problem is still in the form
of mixed integer linear programming (MILP), which has
exponential time complexity. The commercial solvers can
solve it efficiently for small-sized networks only but not
for moderate or large-sized networks. We then derive the
second algorithm considering the interference relationships
among links, able to solve our developed model in a
polynomial time. The solution gap between our algorithm
and the optimal one is theoretically derived and proved,
signifying the efficiency and effectiveness of our design.
We have conducted simulation studies to quantify AoI
performance in OFDM-based multi-hop wireless networks.
The numerical results show the relationships of AoI with (1)
channel resources, (2) wireless interference, and (3) packet
generation rates in multi-hop networks to demonstrate the
advantages of our proposed model and algorithms.

The remainder of this paper is organized as follows.
Section 2 illustrates our network model. In Section 3, we
develop the mathematical model and deal with the AoI
minimization problem in OFDM-based multi-hop networks.
In Section 4, we devise two approximate algorithms for the
AoI optimization problem. In Section 5, we present the nu-
merical AoI performance results, which exhibit the impacts
of physical factors on AoI. In Section 6 and Section 7, we
outline related work and discussion, respectively. Section 8
concludes the paper.

2 NETWORK MODEL

In this paper, we consider a multi-hop wireless network
comprising a set of nodes N and a number of sessions
L as shown in Figure 2. Suppose each session has a pre-
defined route traversing multiple nodes from a source to its
destination node.

We denote sl and dl as the source and destination nodes
of a session l ∈ L, respectively, with Pl indicating its
traversal path. Suppose this network has time-sensitive ap-
plications, calling for stringent requirements on information
transfer freshness. To capture updating information so as to

Fig. 1. AoI variation at a node i in session l.

Fig. 2. An example of a multi-hop wireless network.

fulfill such time-sensitive application needs, we adopt Age
of Information (AoI) as the main performance metric.

To model AoI at a time t, we denote Gli(t) as the gener-
ation time of the latest arrived packet at an intermediate
node i from source node sl on path Pl. Thus, AoI for
packets reaching node i at time t, denoted by ali(t), can be
mathematically expressed as:

ali(t) = t−Gli(t). (1)

Figure 1 illustrates the variation of AoI at node i. Assume
the kth packet is generated at time t(k) from the source
node and delivered to node i at time t̂i(k). AoI increases
linearly (after receiving the prior (k − 1)th packet) until the
kth packet arrival; AoI is then reduced to t̂(k) − t(k). After
that, AoI continues to rise linearly with time t, i.e., ali(t) =
t− t(k), until this node receives the next packet.

From Figure 1, the total aggregated AoI over a time
range (0, T ) at node i (denoted as ∆Ali) can be calculated
by using the graphical approach, i.e., the area under the
sawtooth curve within the time range, expressed by:

∆Ali =

∫ T

0
ali(t) dt . (2)

Then, we denote the following time averaged AoI at a node
i (denoted as Ali), i.e.,

Ali =
∆Ali
T

=
1

T

∫ T

0
ali(t) dt . (3)

In this paper, we aim to explore AoI in multi-hop wire-
less networks under widely adopted OFDM channel access
modulation, starting with developing a tactical model for
AoI optimization in such wireless networks. There are a
number of challenges arising for exploring AoI in multi-hop
networks, including but are not limited to

• In multi-hop settings, the packet arrival procedures
among intermediate nodes correlate with each other.
To model AoI at a destination node, it is neces-
sary to capture the packet arrival process at each



intermediate node. As we can only have the packet
arrival process at a source node, how to model such
arrival process at each intermediate node and its
relationships with the arrival process at source node
is a challenging problem.

• The channel allocation is critical in OFDM-based
multi-hop wireless networks. There are two main
purposes for channel allocation in multi-hop net-
works. First, scheduling the transmission of each link
to ensure a packet is transported from its source
to its destination. Second, the number of channels
allocated to each link determines its service capa-
bility. As the significant difference of AoI and the
traditional performance metrics, i.e., throughput and
delay, the existing channel allocations strategy may
not work here anymore. This poses new challenge
to develop novel channel allocation strategy to make
all links have the suitable service rates that minimize
AoIs at destination nodes.

• The interference is an annoying problem in wireless
networks, especially in multi-hop settings to become
even much more pronounced. A set of interference
constraints has to be accounted for, including half-
duplex, unicast, and channels reuse, so as to ensure
that all packets can be transported to destination
nodes successfully. It is obviously non-trivial to cap-
ture all potential interference relationships and es-
tablish a suitable model under which all nodes can
transmit and receive packets without interference in
multi-hop networks.

3 MATHEMATICAL MODELING AND PROBLEM
FORMULATION

Suppose B orthogonal channels with equal bandwidth are
available in total and they are scheduled (i.e., activated) for
packet transmission over links with no interference present
among activated links. The route from a session’s source
node to its destination node is known apriori, found by a
certain standard routing protocol (e.g., AODV [29] or DSR
[30]). Multiple sessions may intersect at some nodes but
no multiple sessions share the same link. We denote Ri as
the set of nodes that receive packets from node i (i.e., i’s
successors) and denote Ji as the set of nodes that transmit
packets to i (i.e., i’s predecessors). The set of nodes located
within the interference range of node i is denoted by Ii.
Table 1 lists notations employed in this paper.

To model link scheduling, we use a binary variable nij [b]
to indicate whether a link from node i to node j (i.e., (i, j)) is
activated or not for transmitting packets in a given channel
b, i.e., nij [b] = 1, if the link (i, j) is activated in channel b;
nij [b] = 0, otherwise. We have:

nij [b] =

{
1, if the link (i, j) is activated in channel b ,
0, otherwise.

where i, j ∈ N , 1 ≤ b ≤ B, and j ∈ Ri.
We assume that each session is unicast. That is, a node

i can transmit to, or receive from, only one node over a
channel b. Thus, we have:∑

j∈Ri

nij [b] ≤ 1 , (4)

∑
j∈Ji

nji[b] ≤ 1 . (5)

To account for half-duplex at each node i, we have:

nij [b] + nzi[b] ≤ 1, (i ∈ N , j ∈ Ri, z ∈ Ji, 1 ≤ b ≤ B). (6)

These constraints can be replaced by the following equiva-
lents: ∑

j∈Ri

nij [b] +
∑
z∈Ji

nzi[b] ≤ 1, (i ∈ N , 1 ≤ b ≤ B). (7)

To avoid interference among links, we assume that if a
node j ∈ N is receiving data over a channel b, it never
gets interfered by another (unintended) transmitting node
p ∈ Ij in the same channel. Hence, we have the following
constraint:

nij [b] + nph[b] ≤ 1, (8)

where j ∈ N , i ∈ Jj , p ∈ Ij , h ∈ Rp, j 6= h, and 1 ≤ b ≤ B.

3.1 Queuing Model
Let M l

ij(k), W l
ij(k), and X l

ij(k) denote the system time, the
waiting time, and the service time, respectively, for the kth
packet transmitted from a node i to its successor node j
on a path Pl. Here, the waiting time W l

ij(k) is considered
as the time interval between the kth packet reaching node
i and starting to be transmitted over link (i, j). In other
words, it is the time a packet stays in the queue. The service
time X l

ij(k) is the time that link (i, j) spends in delivering
the kth packet. It is the time duration of a packet from its
transmission start to its transmission end over link (i, j).
The system time refers to the time interval between a packet
reaching the queue at a node and it finishing transmission
to its successor, thereby calculated as the sum of packet’s
waiting time in the queue and its service time, i.e.,

M l
ij(k) = W l

ij(k) +X l
ij(k). (9)

We assume the kth packet arrives at nodes i and j at time
t̂i(k) and t̂j(k), respectively. The propagation delay, being
negligible, is not considered here, with a packet assumed
for instant transfer to the next node if there are available
channels on the outgoing link, so the system time M l

ij(k)
can be calculated as

M l
ij(k) = t̂j(k)− t̂i(k). (10)

With I li(k) denoting the time interval of two consecutive
packets, i.e., (k−1)th and kth ones, arriving at node i, i 6= sl
along path Pl, we have:

I li(k) = t̂i(k)− t̂i(k − 1). (11)

Specifically, at the source node sl, I lsl(k) represents the time
interval between the generation times of the (k − 1)th and
the kth packets, i.e.,

I lsl(k) = t(k)− t(k − 1). (12)

Suppose packets at all nodes follow First Come First
Served (FCFS) scheduling, while at each source node, the
packet is generated and serviced with an M/M/1 queuing
system. For simplicity, we assume that packets arrive at (i.e.,
packet generation) all source nodes following the Poisson
process with the rate of λ, and that packets’ service times



TABLE 1
Notations employed in this paper

N The set of nodes in the multi-hop network.
L The set of sessions in the multi-hop network.
B The number of orthogonal channels.
D The number of links in the multi-hop network.
sl The source node of a session l ∈ L.
dl The destination node of a session l ∈ L.
Pl The traversal path of session l ∈ L.
Pl The set of traversed nodes along a path Pl.
Gl

i(t) The generation time of the latest arrived packet at a node i from source node sl at time t.
ali(t) AoI for packets from the source node sl reaching a node i at time t.
Al

i The time averaged AoI at a node i from source sl.
Aave The total time averaged AoI among all sessions.
Ri The set of nodes that receive packets from node i.
Ji The set of nodes that transmit packets to node i.
Ii The set of nodes located within the interference range of node i.

nij [b] = 1 if the link (i, j) is activated in a channel b; = 0, otherwise.
M l

ij(k) The system time for the kth packet transmitted from a node i to its successor node j in a path Pl.
W l

ij(k) The waiting time for the kth packet transmitted from a node i to its successor node j in a path Pl.
Xl

ij(k) The service time for the kth packet transmitted from a node i to its successor node j in a path Pl.
Ili(k) Time interval of two consecutive packets ((k − 1)th and kth) ones, arriving at node i, i 6= sl along path Pl.
λ The packet generation rate at source nodes.
µij Total service rate of a link (i, j) over all its available channels.
fij Activation frequency of a link (i, j) on all channels.

at all nodes follow the i.i.d exponential distribution with
the rate of µ at each node in every channel. If E[·] denotes
the average value, we have E[I lsl ] = 1/λ. According to the
M/M/1 property at source nodes, we have the following
lemma.

Lemma 1. At each node along path Pl, the packet arrival process
has the same distribution as that of the packet generation process
at its source node sl, i.e.,

E[I li ] = E[I lsl ] = 1/λ, ∀i ∈ Pl, i 6= sl, (13)

where Pl represents the set of traversed nodes on path Pl.

Proof. Burke’s theorem [31] is employed to prove this
lemma. It asserts that, for the M/M/1 queue in the steady
state, if the arrival is a Poisson process with a rate of λ, the
departure is also a Poisson process with the same rate. Since
each source node sl is an FCFS M/M/1 queuing system,
the departure process at the source node will follow the
Poisson process with the rate of λ, which is the same as
the source’s arrival rate (i.e., generation rate). As packets
can be immediately transmitted to the next node if there are
available channels on the outgoing links, the arrival process
of a packet at the second node along Pl must be the same as
the departure process of its predecessor (i.e., the upstream
source node). Multiple sessions may intersect at a certain
node, at which the departure process of packets that belong
to source sl must keep the same as its packet arrival process
based on Burke’s theorem. Thus, at each node on its path
Pl, the arrival of packets which belong to sl will follow the
Poisson process with the rate of λ.

Since the packet arrival process follows the Poisson
process and the service process is assumed to be governed
by the i.i.d exponential distribution at each node, the packet
transmission process can be modeled as an FCFS M/M/1
queue.

3.2 Link Activation Constraints
We let variable fij indicate the activation frequency of a link
(i, j) among all channels, i.e.,

fij =
B∑
b=1

nij [b], (j ∈ Ri). (14)

That is, fij represents the number of channels that a link
(i, j) can activate among B channels. Note here, if fij =
0, the link (i, j) cannot be activated in any channel. There
will be no packet transmitting successfully in the associated
session. In this case, the AoI will be considered as infinity,
which is not our expectation. Here, we aim to have each link
activated at least once, i.e.,

fij ≥ 1, (i ∈ N , j ∈ Ri). (15)

Denote the total service rate of a link (i, j) over all its
available channels as µij , which can be modeled by the link
activation frequency and the service rate on each channel,
i.e.,

µij = µfij . (16)

Notably, in an FCFS M/M/1 queuing model, if the packet
arrival rate is no less than the service rate at a node, the
number of packets in the queue becomes infinite when
the transmission process reaches stability. To avoid this
undesirable situation, at each node on path Pl, we let the
total service rate be greater than the arrival rate, yielding

µij = µfij > λ, (i ∈ N , j ∈ Ri). (17)

3.3 AoI Formula
We start with deriving the AoI relationship of any two
neighboring nodes, e.g., node i and its successor j along
path Pl. This relationship later helps us to derive AoI at a
destination node from its source. Let Ali and Alj denote the
time averaged AoI at nodes i and j, respectively. According
to the property of AoI, we have the following theorem.



Fig. 3. AoI variations at two consecutive nodes on a path.

Theorem 1. Time averaged AoI at a node j and its predecessor i
along path Pl within the time span of (0, T ) satisfies the following
relationship:

Alj = Ali + λE[I lslM
l
ij ]. (18)

Proof. In Figure 3, assume the kth packet is generated by
a source node sl at t(k) and is received by nodes i and
j at t̂i(k) and t̂j(k), respectively. Suppose the line segments
with pairs of circular and square symbols represent the AoIs
at nodes i and j, respectively, and each aggregated AoI is
the area under its sawtooth curve. The difference of the
aggregated AoIs between nodes i and j can be calculated as
a sum of shadow parallelogram parts in Figure 3. Therefore,
the relationship of aggregated AoIs at node j and node i can
be calculated by

∆Alj = ∆Ali +
K∑
k=1

Qk, (19)

where Qk is the area of the kth parallelogram (indicated as
the shadow area in Figure 3) and K is the total number of
packets that are delivered within the time span (0, T ). Here,
the areaQk can be calculated by the product of t(k)−t(k−1)
and t̂j(k) − t̂i(k), which are equal to I lsl(k) and M l

ij(k),
respectively. Therefore, we have:

Qk = I lsl(k)M l
ij(k). (20)

As a result, ∆Alj can be rewritten as

∆Alj = ∆Ali +
K∑
k=1

I lsl(k)M l
ij(k). (21)

Within the time span of (0, T ), the time averaged AoI is

Alj =
∆Alj
T

= Ali +

∑K
k=1 I

l
sl

(k)M l
ij(k)

T

= Ali +
K

T

1

K

K∑
k=1

I lsl(k)M l
ij(k)

= Ali +
K

T
E[I lslM

l
ij ]. (22)

Based on Lemma 1, the packet arrival rate at each node is
λ. As node j has received a total of K packets within (0, T )
and no packet is dropped, we have:

λ =
K

T
. (23)

As a result, the relationship of time averaged AoI of two
consecutive nodes can be expressed by

Alj = Ali + λE[I lslM
l
ij ]. (24)

As stated in Theorem 1, AoI at the destination node can
be derived by recursive calculation from the source node.
Thus, we obtain the following theorem for the time average
AoI at the destination node dl.

Theorem 2. Time averaged AoI at destination node dl on path
Pl can be formulated as follows:

Aldl =
1

λ
+

∑
i∈Pl,i6=dl

( 1

µfij
+

λ2

(µfij)2(µfij − λ)

)
, (25)

where node j is node i’s successor.

This theorem is derived from Theorem 1, by traversing
all links along each session l until reaching its destination
node dl. The detailed proof is deferred to Appendix A.1.

From Theorem 2, we have the total time averaged AoI
among all sessions, denoted by Aave, as follows:

Aave =
∑
l∈L

( 1
λ
+

i6=dl∑
i∈Pl

( 1

µfij
+

λ2

(µfij)2(µfij − λ)
))

=
|L|
λ

+
∑
i∈N

∑
j∈Ri

( 1

µfij
+

λ2

(µfij)2(µfij − λ)
)
. (26)

3.4 Problem Formulation
With the developed model, we are interested in minimizing
the total time averaged AoI at all destination nodes, as
formulated next.

OPT-O min Aave

s.t. The total time averaged AoI function: (26);

Interference constraints: (7), (8);

Links activation frequency: (14);

Queuing model constraint: (17).

where L, µ, and λ are constant. fij and nij [b] are integer and
binary variables, respectively, which are to be solved for op-
timizing the total time averaged AoIAave. Due to non-linear
terms in the objective function, the optimization problem is
in the form of mixed-integer non-linear programming (MINLP),
which is NP-hard in general. Two approximate algorithms
are then provided next to solve this problem.

4 ALGORITHM DESIGN

In this section, we provide two approximate algorithms
to solve the optimization problem of OPT-O. In the first
algorithm, we aim to design a solution that can approach
the optimal one as closely as possible by pre-setting the
required approximate error bound. We make use of the
piece-wise linearization technique to linearize the objective
function and then solve it by using the commercial solver.
This algorithm approaches closer to the optimal solution by
setting a smaller approximation error bound, but it has high
computation complexity, making it unsuitable for moderate



or large-sized networks. In the second algorithm, we design
a polynomial time solution to solve OPT-O and theoretically
prove the gap between our algorithm’s solution and the
optimal one.

4.1 Linearized Approximate Algorithm
Considering the commercial solver, such as CPLEX, can help
to solve the linear programming problem, here, the main
idea of this linear approximate algorithm is to replace the
nonlinear function in the problem by linear segments, which
is called piece-wise linearization. Moreover, the proposed
algorithm constructs these linear segments within any given
difference compared to the original function, in other words,
the performance bound of the approximate solution is con-
trollable. However, the closer to optimal, the more segments
are needed, resulting in longer processing times in CPLEX.

In OPT-O, the non-linear part is in the objective function.
So, we define a new function as

h(x) =
1

µx
+

λ2

(µx)2(µx− λ)
,

and replace the objective function with

Aave =
|L|
λ

+
∑
i∈N

∑
j∈Ri

h(fij). (27)

Since fij is in the range of [λµ , B] (from Constraints (14) and
(17)), we have

∂h(x)

∂x2
=

2

µx3
−

2λ2
(
3λ3 − 11λ2µx+ 14λµ2x2 − 6µ3x3

)
µ2x4 (µx− λ)

4

> 0

Thus, h(fij) is a convex function. This allows us to employ
the piece-wise linearization technique to approximate the
curve of h(fij). Our goal here is to replace each h(fij)
with a minimum set of linear segments while ensuring
that the difference between any point on h(fij) and its
corresponding linear approximate value is no more than
a given error η. We assume C is the minimum number of
linear segments and f0ij , f

1
ij , · · · , fCij are values on the X-

axis for the end points of these segments. As variable fij
is in the range of [λµ , B] from Constraints (14) and (17)) we
have

f0ij = dλ
µ
e, fCij = B .

To find the minimum value of C , we start from the first
point f0ij to calculate the slope of the first segment, which
ensures that the gap between this linear segment and the
original curve is no more than η. Given this start point and
the slope, we can obtain the end point of this segment that
intersects with the original curve. This end point is also the
start point of the second segment, denoted by f1ij . From
there on, we repeat the above process until all segments
are identified to cover the feasible range of fij . With the c-th
linear segment and its slope denoted respectively byGc(fij)
and qcij , we have

qcij =
h(f cij)− h(f c−1ij )

f cij − f
c−1
ij

, (28)

Gc(fij) = qcij · (fij − f c−1ij ) + h(f c−1ij ). (29)

Fig. 4. The piece-wise approximation.

As shown in Figure 4, over the range of (f c−1ij , f cij), there
is a point where the gap is maximum, i.e., equal to η. With
the X-coordinate of this point denoted by f̂ cij and based on
the mathematical definition, we get the following equations:

∂h(f̂ cij)

∂fij
− qcij = 0, Gc(f̂

c
ij)− h(f̂ cij) = η. (30)

Specifically, if h(f c−1ij ) ≤ η for the start point of c-th
segment, there is no feasible solution to Equation (30). In
this case, we set the end point f cij = B while connecting
the points of (f c−1ij , h(f c−1ij )) and (B, h(B)) to represent the
last segment.

Therefore, given an error bound η, the values of
f1ij , · · · , fCij and slopes q1ij , · · · , qCij can be calculated by
Algorithm 1.

Algorithm 1 : Piece-wise Linearization

Initialization: c = 1 and f c−1ij = dλµe.
while f c−1ij < B and h(f c−1ij ) > η do

Calculating slope qcij by solving the equation (30).
With qcij , calculate the f cij based on (28).
c=c+1.

end while
if f c−1ij ≥ B then
C = c − 1, fCij = B, and recalculate the qCij based on
(28).

else if h(f c−1ij ) ≤ η then
C = c, fCij = B, and calculate qCij based on (28).

end if

Lemma 2. The approximation error within each linear segment
derived from Algorithm 1 is no more than η.

The proof can be directly obtained from the above
construction and is omitted here. With Algorithm 1, we
approximate the non-linear term of h(fij) in the objective
function via a set of linear segments with an error upper
bounded by η. Let G(fij) denote the concatenated linear
segments constructed by Algorithm 1. The objective func-
tion of minAave for OPT-O then can be replaced by the



following linear objective function and constraints:

min AaveL

s.t. AaveL =
|L|
λ

+
∑
i∈N

∑
j∈Ri

G(fij); (31)

G(fij) ≥ qcij · (fij − f c−1ij ) + h(f c−1ij ),

(c = 1, 2, · · · , C, fij ∈ [
λ

µ
,B], i ∈ N , j ∈ Ri). (32)

The original OPT-O problem can be re-formulated into a
new optimization problem, denoted by OPT-L.

OPT-L min AaveL

s.t. Constraints: (7), (8), (14), (17), (31), (32).

In OPT-L, the liner segments concatenation G(fij) and the
start point of each link f c−1ij have been calculated in the
aforementioned steps. Here, we aim to solve the variables
fij and nij [b] for optimizing the linearized total time aver-
aged AoI AaveL . The following theorem characterizes the gap
between the optimal objective values of OPT-O and OPT-L.

Theorem 3. The gap between the optimal objective values of
OPT-O and OPT-L, ε, is upper bounded by

ε ≤
∑
i∈N

∑
j∈Ri

η .

The proof of Theorem 3 is deferred to Appendix A.2.
With Algorithm 1 and Theorem 3, for any pre-setted

approximation error ε, we can calculate the linear approxi-
mation error η and construct a series of linear segments to
arrive at OPT-L. By solving OPT-L, we obtain the feasible
solutions for OPT-O, with the approximation error to the
optimal solution being no more than ε. OPT-L is in the form
of mixed-integer linear programming, which is NP-hard in
general. The commercial solvers (e.g., CPLEX) can be used
to solve it directly, but they are not scalable to moderate or
large-sized networks. Hence, this algorithm possesses the
advantage of approaching the optimal solution as closely
as we wish, but it is not scalable due to the concern of
computation complexity.

4.2 Polynomial Time Algorithm

In this section, we design an efficient algorithm to solve
OPT-O with polynomial time complexity while offering the
guaranteed approximation gap to the optimal solution. The
key challenge is to find the proper values of fij (i.e., link
activation frequency) for all links toward minimizing AoI at
all destination nodes. Hence, the essence of our algorithm
design is to determine the link activation frequency of all
links by taking interference avoidance into account.

Our algorithm includes two steps. In the first step, we
construct an interference graph, in which each vertex rep-
resents a unique link in the network and each edge models
the interference relationships between two links. The key
idea here is to check Constraints (7) and (8), ensuring if
two pairs of vertices (i.e., links) cannot be activated in the
same channel due to the interference, half-duplex, or unicast
constraints, the existence of an edge between these two
vertex pairs.

In the second step, we iteratively determine the value for
each vertex by assigning the channels to the respective link,
which will be its activation frequency. Before illustrating
the channels assignment strategy, we first discuss the lower
bound of OPT-O, which will be used later in our algorithm
design and its theoretical proof.

Lemma 3. A lower bound for the objective of OPT-O, can be
obtained by assigning each link with B/3 channels.

Proof. Consider three consecutive links in a session, denoted
as l1, l2, and l3. l1 will interfere with both l2 and l3 due to the
half duplex and interference constraints, respectively, from
Constraints (7) and (8). Similarly, l2 will interfere with l1 and
l3 while l3 will interfere with l1 and l2. Hence, at least three
consecutive links cannot be scheduled in the same channel.
To derive the lower bound of OPT-O, we can reformulate it
by only considering a series of three consecutive links. The
reformulated problem is shown as follows

min Aave =
|L|
λ

+
∑
i∈N

∑
j∈Ri

( 1

µfij
+

λ2

(µfij)2(µfij − λ)

)
s.t. fij + fjk + fkh ≤ B, (i ∈ N , j ∈ Ri, k ∈ Rj , h ∈ Rk).

This problem can be directly solved by employing the
Lagrange multipliers method. The optimal solution results
in all fij equal to B/3. Thus, a lower bound for OPT-O can
be obtained by scheduling each link with B/3 channels.

From Lemma 3, we can assign each link in the network
with B/3 channels, then the lower bound of AoI, denoted
by AaveLB , can be calculated as follows:

AaveLB =
|L|
λ

+
∑
i∈N

∑
j∈Ri

( 1

µB/3
+

λ2

(µB/3)2(µB/3− λ)

)
.

(33)
Notably, such a lower bound is the minimal total time aver-
aged AoI that the network can achieve without considering
other constraints. The gap of averaged AoI between what
is obtained by our algorithm and the optimal solution will
be less than the difference between what is obtained by our
algorithm and the lower bound.

Lemma 3 also implies that the averaged assignment of
channels may help to minimize the AoI. This will guide
the development of our channel allocation strategy in OPT-
O. Algorithm 2 shows our design of determining the link
activation frequency on each link. The main idea here is to
assign the value to each vertex (i.e., assigning the number
of channels to each link) and its neighboring vertices, based
on the number of neighboring vertices, i.e., the degree of a
vertex. We sort all vertices based on their degrees in the
descending order and equally assign all channels to the
vertex and its neighbors until all vertices are assigned with
values. If one node has been assigned with a value in the
previous step, this node will not be reassigned. After that,
we continue to increment the value of each vertex by one
each time in turn if there are more channels that can be
added on, to further improve the AoI performance. This
algorithm terminates when the values of all vertices cannot
be further incremented.

Theorem 4. The channel assignment solution derived from Al-
gorithm 2 is feasible and our algorithm has the computation time



Algorithm 2 : Channel Assignment
Input: G = {V,E}
for v ∈ V do
v.value = 0 and calculate the degree (i.e., the number
of neighbor nodes) of v, recorded as v.degree.

end for
Sort V based on the descending order of v.degree.
for v ∈ V , selecting from the largest to lowest degrees
do

if v.value = 0 then
v.value = bB/(v.degree+ 1)c.
Assign v.value feasible channels to link v.

end if
for all v’s neighbors v′ do

if v′.value = 0 then
v

′
.value = v.value.

Assign v
′
.value feasible channels to link v′.

end if
end for

end for
while Links can be assigned with more channels do

for v ∈ V do
if v can be assigned with more channels then

Choose a channel b satisfying Constraints (7)
and (8) while being occupied with the largest
number of links, and assign it to v.

end if
end for

end while

complexity equal to O(D2) +O(DB), where D is the number of
links and B is the number of channels.

Proof. In the interference graph, each vertex will interfere
with all its neighbors. Thus, a vertex and all its neighbors
can be considered as a mutual interference set. If we can
assign channels to the vertices in each mutual interference
set without interference, then our solution is feasible. In
Algorithm 2, we start from the vertex with the largest
degree and assign channels equally to it and its neighbors.
Assume the largest degree is U1. Then, this vertex and its
neighbors will be assigned with T1 = B/(U1 + 1) channels.
In the second step, we select the vertex with the second
largest degree, denote as U2. For this vertex and neighboring
vertices, if they are the neighbors of the first vertex, they
have been assigned the channels of T1 = B/(U1 + 1)
and the channell allocation remains unchanged. For those
that are not the neighbors of the first vertex, they will be
assigned T2 = B/(U2 + 1) channels. As U2 ≤ U1, obviously,
the total number of assigned channels among this second
vertex and its neighbors will be no more than B as well.
Thus, the channel assignment solution at this stage is still
feasible. Similarly, in all the remaining steps, the channel
assignment solution can be shown to be feasible. In the
end, we add the channel to a link only if there exists any
available channel that can be added on. Therefore, we can
conclude the channel assignment solution from Algorithm 2
is feasible.

The computation complexity of this algorithm comes
from four stages. First, calculating the degrees of links re-

quires to search all link pairs, resulting inO(D2) complexity,
where D is the number of links. Second, sorting V based on
the descending order of v.degree requiresO(D) complexity.
Third, for each v ∈ V , assigning the values for it and all
its neighbors resulting in O(D2) complexity. In the end,
if links can be assigned with more channels, we need to
examine the pair of each link and each channel with the
constraints, leading to the total ofO(DB) complexity, where
B is the number of channels. In total, our algorithm has the
computation complexity of O(D2) +O(DB).

Next we will provide the theoretical performance bound
for our algorithm.

Theorem 5. Denote the minimum averaged AoIs from Algo-
rithm 2 and OPT-O as Aave∗ and Aaveopt , respectively, we have:

Aave∗ ≤ Aaveopt +
µB − 3λ− 3

µB − 3λ
D , (34)

where D is the number of links.

The proof of Theorem 5 is based on that the gap of
averaged AoI between what is obtained by our algorithm
Aave∗ and the optimal solution Aaveopt will be less than the
difference of upper bound and lower bound. The detailed
proof can be found in Appendix A.3.

5 EVALUATION

In this section, we provide the numerical results to illus-
trate AoI performance in OFDM-based multi-hop networks,
where nodes are randomly placed in a 150 × 150 area.
The source and destination nodes of each session are ran-
domly selected among these nodes, with the shortest path
being employed to find the route, although other routing
methods may be used if needed. We randomly generate
sessions in the network, with the total number of links
ranging from 10 to 30. For generality, we normalize the
units for distance, transmission range, interference range,
packet generation rate, and a single channel’s service rate
with respect to appropriate values. The transmission range
of each node is set to 40, while the interference range is
specified in the respective performance studies. Given that
there is no prior solution for AoI optimization in OFDM-
based multi-hop wireless networks, we adopt two baseline
channel scheduling policies for comparison, i.e., the Round
Robin (RR) policy and the greedy policy. For the former, we
assign links with channels in turn until no more link can be
assigned without interference. For the latter, a link with less
interference has a higher priority in getting assigned with
more channels.

The goal of this section is twofold. First, we show
AoI performance of our developed model and proposed
algorithms by comparing their results with those of the
RR policy to exhibit their advantage potentials in terms
of minimizing AoI in OFDM-based multi-hop networks.
Second, we illustrate the impact of different physical factors
(i.e., channel amounts, the interference range, and the packet
generation rate) on AoI.
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Fig. 5. The comparison of AoI among our solutions, RR policy, and
greedy policy.
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Fig. 6. AoI comparative results of our PTA, upper bound, and lower
bound.

5.1 Comparisons

We set the interference range, the packet generation rate,
and a single channel’s service rate as 80, 0.80, and 1,
respectively. In the linearized approximate solution, we set
the gap values of ε = 1 and ε = 6, respectively. The number
of sessions in the network grows when the link count rises
from 10 to 30 and the number of channels is set to 50.
Our experiment is conducted on an ASUS ROG GL702VS
Laptop, equipped with Intel Core i7-7700HQ CPU clocking
at 2.8 GHz. The laptop has 16 GB DRAM and runs Windows
10 Professional.

The AoI comparative results of our proposed solutions,
the RR policy, and the greedy policy versus the scheduled
link counts are shown in Figure 5. We observe that the
AoI results obtained from both our proposed linearized
algorithm (LA) and polynomial time algorithm (PTA) are
always far better than those of the RR and greedy policies.
Under the RR policy, links that cause high interference are
assigned equally with other links, leading to low utiliza-
tion of those channels assigned to high-interfering links.
As a result, the total of link activation frequency is lower
under the RR policy than under our proposed algorithms,
rendering the RR policy to have higher AoI values. Under
the greedy policy, the channel allocation among links is
unbalanced since more interfered links are assigned with
fewer channels. It results in AoI values close to those under

the RR policy, having much higher AoI values than our
proposed approaches.

When comparing LA and PTA, we can see, for ε = 1, AoI
is always better under LA than under PTA. However, when
ε = 6, LA underperforms PTA. This is expected as the large
value of ε represents that LA’s performance is far away from
the optimal solution. In this case, its performance becomes
worse than that of the PTA, signifying that our PTA solution
is closer to the optimal solution. To make LA produce a near
optimal solution, we can set the ε value as small as possible,
but the computation complexity will increase accordingly.

We also plot the upper and the lower bounds of our
PTA algorithm and compare them to our PTA performance
results for a range of link amounts, as depicted in Figure 6.
We observe when the number of links is small, PTA results
are very close to the two bounds, demonstrating that our
solution approaches the optimal one. Even with an increase
in link amounts, the gap between two bounds increases, but
our PTA is more close to the lower bound, at which the
optimal solution resides. Thus, we can conclude that our
PTA solution is close to the optimal one.

We then compare the running times of LA and PTA for
various link counts and a range of available channels in the
networks. Table 2 lists the running times of LA and PTA
when varying the numbers of links and channels. From the
last two columns, PTA is seen to be always much faster than
LA. In particular, the running time of LA algorithm rises
from 2.34 to 7234.67 seconds when the numbers of links and
of channels increase respectively from 10 to 50 and 15 to 80
for ε = 1. If the gap ε is set to a larger value, i.e., 30 and 50,
the running times of LA drop but they are still much larger
than those of the PTA. On the other hand, PTA always takes
less than 1 second, clearly demonstrating its polynomial
time advantages. Furthermore, when comparing the last
three rows where the link numbers, channel amounts, and
the interference range are all identical, the computation time
of LA increases from 3761.74s to 7234.67 as ε drops from 50
to 1. The reason is that a smaller ε value results in more
linear segments, which call for a much longer computation
time.

In practice, the use of LA and PTA can be determined
based on the network operator’s demands and the network
topology. If the network operator has a strict performance
requirement while the network topology is simple, LA is
a better choice, since it can approach the optimal solution
as closely as desired. But if the performance demand is
not strict and the network topology is complex, PTA is
preferred, due to its fast computation.

5.2 Impacts of Physical Factors

We then explore the impact of such factors as channel
amounts, interference range, and packet generation rate, on
the resulting AoI. Here, we follow the similar setting as
above and present the results of polynomial time algorithm
only.

5.2.1 Impacts of Channel Amounts and Link Counts on AoI
The interference range is set to be 60. We first fix the
bandwidth of each channel, by assuming the packet service
rate to be 1. Figure 7 shows the AoI results when varying the



TABLE 2
Comparative running times between our linearized algorithm (LA) and

polynomial time algorithm (PTA)

Links Channels ε Interference Range LA PTA

10 15 1 60 2.34s <1s
10 30 1 60 3.79s <1s
20 30 1 60 20.68s <1s
30 30 1 60 130.44s <1s
30 50 1 60 727.12s <1s
30 60 1 60 1576.59s <1s
50 60 1 60 3611.81s <1s
50 80 1 60 7234.67s <1s
50 80 30 60 4031.91s <1s
50 80 50 60 3761.74s <1s

numbers of channels and links. In this figure, AoI values are
seen to improve with an increase of the available channel
amount. In particular, when the channel amount rises from
20 to 50, AoI decreases from 11.01 to 4.56, from 14.50 to
5.25, from 18.67 to 8.78, from 37.83 to 14.46, and from 50.46
to 20.20, respectively, under 10, 15, 20, 25, and 30 links.
The reason is that more channels raise total bandwidth and
can provide more activation opportunities for links, which
can help lift the packet service rate on each link, thereby
lowering destination nodes’ AoI. On the other hand, an
increase of the link amount degrades AoI performance. For
example, when the link amount grows from 10, 15, 20, 25,
to 30, the AoI value increases from 11.01 to 50.46, from
8.06 to 35.09, from 6.26 to 26.10, and from 4.56 to 20.20,
respectively, corresponding to the networks with 20, 30, 40,
and 50 channels. This is because, for given channel amounts,
more links in the network will reduce each link’s activation
opportunity, leading to a lower packet service rate (i.e., link
activation frequency) on each link and thus degrading AoI
performance.

We next fix the total bandwidth to be 20 and assume
the packet service rate of 1, corresponding to one unit
bandwidth. Figure 8 shows the AoI results when varying the
numbers of channels and links under fixed total bandwidth,
in contrast to Figure 7 under fixed bandwidth per channel.
The AoI values are still seen to improve with an increase
in the channel amounts under different link counts. When
the channel amount rises from 20 to 50, AoI decreases from
11.01 to 8.68, from 14.50 to 9.75, from 18.67 to 13.05, from
37.83 to 29.67, and from 50.46 to 38.21, respectively, under
10, 15, 20, 25, and 30 links. The reason is that, although
the total bandwidth is fixed, more channels can offer much
finer-grained scheduling among links, therefore helping to
lower AoI values. However, due to the reduced packet
service rate on each channel here (due to fixed total band-
width), corresponding AoI values are larger when compared
to those shown in Figure 7.

5.2.2 Impacts of Interference Range on AoI
We now explore the impact of interference range on AoI.
We fix the number of channels to 40. Figure 9 depicts
the AoI curves for varying interference ranges, with solid,
dashed, and dotted lines corresponding respectively to the
results of interference ranges of 60, 70, and 80. From this
figure, AoI is observed to become worse with an increase
in the interference range. The reason is that a wider in-
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Fig. 7. The impact of channel amounts on AoI under different link counts
with fixed bandwidth on each channel.
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Fig. 8. The impact of channel amounts on AoI under different link counts
with fixed total bandwidth.

terference range increases the interference density in the
networks, thus reducing each link’s activation opportunity,
which in turn lowers the packet service rate on each link to
hike AoI. Specifically, when the number of network links
is only 10, small disparate AoI values result, due to the
low interference density under all three interference ranges.
But, when the number of network links increases to 30,
interference becomes much denser under the interference
range of 80 than under the interference range of 60. Thus,
AoI performance in the former scenario degrades to a much
larger value than the latter one.

5.2.3 Impacts of Packet Generation Rate on AoI
We now set the interference range as 60, the service rate on
each channel as 1, and the number of sessions as 5 for 20
links in the network. Figure 10 shows AoI under 15 and 30
channels, with the packet generation rate varying from 0.1
to 0.9. From the curve of 15 channels, AoI is found to firstly
decrease to the lowest point before moving up afterward.
The reason lies in that when the packet generation rate is
small, all generated packets are served immediately once
arriving at a node, so AoI drops with faster packet delivery
at destination nodes. After the packet generation rate rises
above a threshold point, arrival packets cannot be served
immediately at certain nodes, leading to some packets ex-
periencing wait times there so that they are not delivered to
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Fig. 10. The impact of packet generation rates on AoI under different
channel counts.

destination nodes promptly. For the curve of 30 channels,
we find that its lowest point is situated to the right side
of that for 15 channels. This is expected as more channels
increase the packet service rate and hence can handle higher
packet generation rates. These results provide an insight
into packet generation control for further AoI reduction.

6 RELATED WORK

6.1 AoI in Single-hop Networks

AoI has been studied extensively in single-hop networks.
Considerable previous work focuses on packet generation
rate control, queue management, and the scheduling policy.
In [1], the optimal generation rate with the First Come
First Served (FCFS) scheduling policy has been derived to
minimize AoI at destination nodes, with rate control also ex-
tended to the network with multiple sources [2]. It demon-
strates that the optimal AoI is significantly different from
the minimized delay. In [3], the zero-wait policy has been
explored and found that it doesn’t always minimize AoI.
Meanwhile, various queuing packet management methods
have been pursued in [4], [5], and [6], demonstrating that
discarding old packets can help reduce time averaged AoI.
Work in the scheduling policy has considered the Last
Generated First Served (LGFS) queue discipline with/without
preemption to analyze averaged AoI [7]. The optimized

AoI under preemptive LGFS has been addressed for multi-
server single-hop networks [8]. Replication in the LGFS
policy has been considered recently [9], and it is shown
to help improve AoI in a multi-server system, while an
extended LGFS policy (i.e., Max-Age-First LGFS) has been
addressed in [10]. All previous efforts deal with simple
network settings, without taking into account the realistic
network factors.

AoI has been pursued in the broadcast network [11],
[12]. Specifically, [11] explores the long-run average AoI in
the setting where a base station (BS) can receive packets
from multiple sources and then broadcasts each packet to
its destined user. In [12], the wireless broadcast network
with unreliable channels is addressed for a BS to send
information to multiple clients. The impact of channel access
on AoI has started to receive attention. For example, in [17],
the scheduled access with slotted ALOHA has been con-
sidered to schedule the packet transmission, while in [17],
[18], the “take turns” channel access method is followed to
schedule multiple terminals to communicate with one BS.
In [19], the general TDMA modulation scheme was studied
for AoI minimization and then [20] considered the multi-
channel allocation for data transmission between one BS and
different users.

The effort to consider AoI in different network environ-
mental constraints has begun. For example, [13] and [14]
have pursued energy replenishment and its impact on AoI.
[15] has attempted to optimize AoI with throughput con-
straints, and [16] has studied AoI with general interference
constraints, i.e., pre-determining the set of links that can
be activated simultaneously. Besides, the IoT networks and
network edges scenarios have also been studied to enlarge
the scope from theoretical level to practical implementation.
[32] considered the status sampling and updating behavior
at the IoT network while accounting for an average energy
cost constraint at the IoT device. In the large-scale IoT
network with different time-triggered and event-triggered
traffic, [33] proposed a spatiotemporal framework for op-
timizing the data freshness. For the network edges, the
optimal sampling schedule is proposed to minimize AoI in
[34]. In [35], authors condsidered a central station and a set
of ground terminals via a mobile agent that can travel across
the ground terminals, an AoI-based trajectory is then pro-
posed to improve the data freshness. [36] studied the request
and response behaviors to improve the actual freshness of
data that only accounts for users’ requests. Considering
the industrial IoT, AoI optimization was studied to lift the
average control system performance in [37], [38]. However,
all these work limit the studied scope into the single-hop
network and cannot be simply applied in the multi-hop
setting, which differs from our work.

6.2 AoI in Multi-hop Networks

Prior studies on AoI in multi-hop networks limit their
scopes to either a special network topology or an abstracted
network setting. In [21], AoI is explored in the gossip
network while [22] studies a two-hop network aiming at
energy-harvesting. In [24], a two-hop network was studied
to analyze AoI jointly with the packet coding problem,
where sensors upload data to the edge server through the



sink node. [25] addressed the trade-off between the AoI
and the average energy cost for a two-hop decode-and-
forward (DF) relaying network. In [23], authors analyzed
the AoI optimization in an IoT network with a two-hop
relay. In [26], the LGFS with/without preemption at a source
node is addressed for multi-hop networks where a source
node transmits scheduled packets to different destination
nodes. In [27], general interference constraints in multi-
hop networks are considered in pursuit of AoI, but the
considered models simplify the setting with pre-grouped
interference-free sets and assume each set to have an activa-
tion probability. Our previous work [28] studied the AoI
and throughput tradeoffs in the multi-hop network with
flexible routing. However, the network setting is simplified
with the deterministic packet generation behavior where the
generation rate and time point are assumed to be constant.

Our work is sharply different from previous studies
by (1) considering the general multi-hop network settings
and (2) taking into account the realistic physical factors,
such as channel access modulation (i.e., OFDM), wireless
interference, and transmission routes.

7 DISCUSSION

To the best of our knowledge, this work is the first one
to advance the theoretical foundation of AoI in multi-hop
wireless networks with a series of practical physical factors
involved. Some limitations exist for this work as is pre-
sented, and they are to be addressed in our future work,
as stated in sequence below.

First, the current work only focused on the AoI in OFDM
channel access, while AoI in TDMA (or the hybrid of OFDM
and TDMA)-based multi-hop networks remains open. From
the spectrum utilization and throughput enhancement per-
spectives, OFDM and TDMA operate with no significant
difference, where channels and time slots can play the same
role to help activate network links. But from the optimizing
information freshness perspective, they have fundamental
differences in that all time slots represent a time sequence,
where the activation of a link in different time slots has a
substantial impact on the resulted AoI. With the discrete
characteristic of time slots in a TDMA multi-hop network,
its resulting AoI will be incremented with a slot-by-slot
manner. Thus, the existing method to handle continuously
increasing AoI cannot be applied here and the optimization
problem is to exhibit as the integer problem, which is hard
to be solved for the optimal results. Hence, a new method
to represent the incremental of AoI with the consideration
of TDMA characteristic has to be developed. Thus, it is
more challenging to optimize AoI in TDMA-based multi-
hop wireless networks, because, the ordering time slots to
be activated among different links have to be taken into
account as well, besides resource allocation. This requires
to derive new AoI formula to capture the impact of such
ordering relationships on AoI in TDMA.

Second, this work considered the multi-hop network
setting where multiple sessions may intersect at some nodes
but may not share the same link. This modeling assump-
tion allows to better reveal the AoI performance variation
influenced by plenty of practical issues existing in such a
complex multi-hop network. The main concern comes from

queuing and scheduling resulted from the multi-source
problem at each shared link, since packets that arrive at the
link from different sources may follow distinct distributions
to behave irregularly. Hence, it is critical on how to schedule
the transmission of packets from different sources. The
new analysis of the queuing management and scheduling
strategies in such a scenario is thus needed, exhibiting as an
open and challenging problem.

Third, our simulation outcomes have revealed that the
packet generation rate has a significant impact on AoI.
Even such a problem has been well studied in single-hop
networks, its pursuit in the multi-hop networks is yet to
be explored. New challenges arise in the multi-hop setting
if a tractable model is to be developed for capturing the
relationships of the generation rate and AoI so as to obtain
the optimal generation rate that yields the minimum AoI.
Comparing to the single hop setting, new channel allocation
strategies over different links, interference avoidance, queue
modeling along each session, and AoI formula with the
packet generation rate should be taken into account accord-
ing to the characteristics of multi-hop networks, apparently
a non-trivial endeavor, given that existing solutions for
single-hop settings are inapplicable.

8 CONCLUSION

In this paper, we have addressed the AoI in multi-hop wire-
less networks for the first time by taking into account realis-
tic network factors, including channel access modulations
(i.e., OFDM) and wireless interference (i.e., unicast, half-
duplex, and link interference avoidance). Specifically, we
have developed a rigorous mathematical model to capture
the impacts of channel allocations, link scheduling, wireless
interference, and the queuing model on AoI, deriving a
formula for AoI at destination nodes. Given AoI optimiza-
tion based on our developed model is in the mixed integer
non-linear form, the article provides two approximate al-
gorithms to solve the problem. In the first algorithm, we
employ the piece-wise linearization technique to transform
the non-linear AoI formula into a set of linear constraints,
enabling us to use the commercial solver to solve it. This
algorithm approaches closely to the optimal solution by
properly setting a small error bound, but it does not scale.
In the second algorithm, a polynomial time solution is
proposed to obtain results fast while confining the gap
between its solution and the optimal one. Numerical AoI
performance results under our developed approximation
solutions have been obtained for OFDM-based wireless
networks. The results confirm that our developed solutions
exhibit far better AoI performance than their Round Robin
policy counterpart.
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APPENDIX

A.1 Proof of Theorem 2
Proof. According to the relationship of time averaged AoIs
between two consecutive nodes in Theorem 1, we can de-
rive the averaged AoI at destination node dl by recursive
derivation from source node sl’s successor (denoted as a)
on path Pl:

Aldl = Ala + λ
∑

i∈Pl,i6=sl,dl

E[I lslM
l
ij ] . (35)

Based on Lemma 1, we have shown that the transmission
process at each node can be modeled as an FCFS M/M/1
queuing process. As the transmission from source node sl to
its successor a is a one-hop transmission, the time averaged



AoI derived in [1] for single-hop systems with the FCFS
M/M/1 queuing model can be directly applied here. That
is, the time averaged AoI at node a equals:

Ala = λ
(
E[I lslM

l
sla

] +
E[I lsl ]

2

2

)
. (36)

From [1], the average product of the generation interval time
and the system time in an FCFS M/M/1 queuing system can
be calculated as:

E[I lslM
l
ij ] =

λ

µ2
ij(µij − λ)

+
1

λµij
, (37)

With (36), (37), and (17), we have the time averaged AoI
at destination node dl (i.e., (35)) as given by:

Aldl =Ala + λ
∑

i∈Pl,i6=sl,dl

E[I lslM
l
ij ]

= λ(E[I lslM
l
sla

] +
E[I lsl

2
]

2
) + λ

∑
i∈Pl,i6=sl,dl

E[I lslM
l
ij ]

= λ
E[I lsl

2
]

2
+ λ

∑
i∈Pl,i6=dl

E[I lslM
l
ij ]

=
1

λ
+

∑
i∈Pl,i6=dl

[
1

µij
+

λ2

µ2
ij(µij − λ)

]

=
1

λ
+

∑
i∈Pl,i6=dl

( 1

µfij
+

λ2

(µfij)2(µfij − λ)

)
, (38)

where E[I lsl
2
] = 2/λ2 since the generation process is an

exponential distribution with rate λ.

A.2 Proof of Theorem 3
Proof. Suppose the optimal solution of OPT-O is ϕ∗OPT−O =
{n∗ij [b], f∗ij} with the objective value being Aave∗O . As the
solution ϕ∗OPT−O meets all constraints in OPT-L, we can
construct a feasible solution (denoted as ϕOPT−L) with its
n and f values identical to those in ϕ∗OPT−O, and G(fij) is
solved via those values. Denoting the objective value of the
solution ϕOPT−L as AaveL , we have:

Aave
L −Aave∗

O =
|L|
λ

+
∑
i∈N

∑
j∈Ri

G(fij)−
|L|
λ
−
∑
i∈N

∑
j∈Ri

h(f∗ij)

=
∑
i∈N

∑
j∈Ri

(
G(fij)− h(f∗ij)

)
≤
∑
i∈N

∑
j∈Ri

η ,

where the last inequality is derived from Lemma 2. We
let ε =

∑
i∈N

∑
j∈Ri

η and denote ϕ∗OPT−L as the optimal
solution for OPT-L, with the objective value of Aave∗L . As
AaveL is the objective value of a feasible solution, we have
Aave∗L ≤ AaveL . As a result, Aave∗L −Aave∗O ≤ AaveL −Aave∗O ≤
ε.

A.3 Proof of Theorem 5

Proof. Denote N̄ as the largest degree among all vertices.
According to Algorithm 2, the value of each vertex (i.e.,
channels assigned to the respective link) should be no less
than bB/(N̄ + 1)c. That is, the minimum link activation
frequency fmin=̇bB/(N̄ + 1)c is a feasible solution to OPT-
O. Denote the achievable AoI with fmin as AaveUB , we have:

AaveUB =
|L|
λ

+
∑
i∈N

∑
j∈Ri

( 1

µfmin
+

λ2

(µfmin)2(µfmin − λ)

)
.

From Eqn. (33), we already have the lower bound AaveLB .
Thus, the gap of averaged AoI between our algorithm Aave∗
and the optimal solutionAaveopt will be less than the difference
of upper bound AaveUB and lower bound AaveLB . We have:

Aave∗ −Aaveopt ≤ AaveUB −AaveLB

=
|L|
λ

+
∑
i∈N

∑
j∈Ri

( 1

µfmin
+

λ2

(µfmin)2(µfmin − λ)

)
−
( |L|
λ

+
∑
i∈N

∑
j∈Ri

( 1

µB/3
+

λ2

(µB/3)2(µB/3− λ)

))
≤
∑
i∈N

∑
j∈Ri

( 1

µbB/(N̄ + 1)c − λ
− 1

µB/3− λ
)
. (39)

Based on (17), we have bµB/(N̄ + 1)c > λ/µ, then

Aave∗ −Aaveopt ≤
∑
i∈N

∑
j∈Ri

( 1

µbB/(N̄ + 1)c − λ
− 1

µB/3− λ
)

≤
∑
i∈N

∑
j∈Ri

( 1

µ(bλ/µc+ 1)− λ
− 1

µB/3− λ
)

=
µB − 3λ− 3

µB − 3λ
D, (40)

where D is the number of links in the network. As a result,
we have the gap of our algorithm to the optimal objective
value being no more than µB−3λ−3

µB−3λ D.


